Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Mineral Indicators Of Past Climates

  • Vivien Gornitz
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_143


A mineral is a naturally occurring crystalline solid created by geological or biogenic processes (e.g., calcite/aragonite in mollusk shells or coral). Minerals that form at or near the Earth’s surface are products of chemical weathering, evaporation, authigenic crystallization, and bio-mineralization. They reflect ambient conditions at the Earth-atmosphere interface. Therefore they can furnish important clues about former climates. Minerals are utilized as paleoclimate indicators or proxies in several different ways:
  1. 1.

    To infer past climates and changes over time.

  2. 2.

    To deduce changes in atmospheric composition.

  3. 3.

    As mineralogical “markers” in provenance studies.

  4. 4.

    As “hosts” for climate-sensitive stable isotopes and trace elements.


The most direct mineral indicators or proxies are those that are generated under relatively narrow climatic ranges or within restricted environmental settings. Examples include chemical precipitates such as evaporites, low...

This is a preview of subscription content, log in to check access.


  1. Benison, K.C., and Goldstein, R.H., 1999. Permian paleoclimate data from fluid inclusions in halite. Chem. Geol., 154, 113–132.Google Scholar
  2. Biscaye, P.E., Grousset, F.E., Revel, M., Van der Gaast,Zielinski, G.A., Vaars, A., and Kukla, G., 1997. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 ice core, Summit, Greenland. J. Geophys. Res., 10226, 765–26, 781.Google Scholar
  3. Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G., 1997. Massive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278, 1257–1266.Google Scholar
  4. Broecker, W.S., and Liu, T., 2001. Rock varnish: recorder of desert wetness? GSA Today, 11(8), 10.Google Scholar
  5. Chamley, H., 1989. Clay Sedimentology. Berlin: Springer, 623p.Google Scholar
  6. De Lurio, J.l., and Frakes, L.A., 1999. Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia. Geochim. et Cosmochim. Acta, 63, 1039–1048.Google Scholar
  7. Derry, L.A., and Murray, R.W., 2004. Continental margins and the sulfur cycle. Science, 303, 1981–1982.Google Scholar
  8. England, G.L., Rasmussen, B., Krapez, B., and Groves, D.I., 2002. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology, 49 (6), 1133–1156.Google Scholar
  9. Evans, L.J., 1992. Alteration products at the Earth’s surface–the clay minerals. In Martini, I.P., and Chesworth, W. (eds.), Weathering, Soils, and Paleosols, Amsterdam: Elsevier, Chap. 5, pp. 107–125.Google Scholar
  10. Fleet, M.E., 1998. Detrital pyrite in Witwatersrand gold reefs: X-ray diffraction evidence and implications for atmospheric evolution. Terra Nova, 10(6), 302–306.Google Scholar
  11. Foucault, A., and Stanley, D.J., 1989. Late Quaternary palaeoclimatic oscillations in East Africa recorded by heavy minerals in the Nile delta. Nature, 339, 44–46.Google Scholar
  12. Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S., 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421, 833–837.Google Scholar
  13. Gornitz, V.M., and Schreiber, B.C., 1981. Displacive halite hoppers from the Dead Sea: implications for ancient evaporite deposits. J. Sed. Petrol., 51, 787–794.Google Scholar
  14. Hessler, A.M., Lowe, D.R., Jones, R.L., and Bird, D.K., 2004. A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature, 428, 736–738.Google Scholar
  15. Kastner, M., 1999. Oceanic minerals; their origin, nature of their environment, and significance. Proc. Natl. Acad. Sci., 96, 3380–3387.Google Scholar
  16. Kennedy, M., Droser, M, Mayer, L.M., Pevear, D., and Mrofka, D., 2006. Late Precambrian oxygenation; inception of the clay mineral factory. Science, 311, 1446–1449.Google Scholar
  17. Kirk, J., Ruiz, J., Chesley, J., and Titley, S., 2003. The origin of gold in South Africa. Am. Scientist, 91, 536–541.Google Scholar
  18. Li, Y.H., and Schoonmaker, J.E., 2003. Chemical composition and mineralogy of marine sediments. In: Mackenzie F.T. (ed.), Sediments, Diagenesis, and Sedimentary Rocks (vol. 7), Treatise of Geochemistry, Holland, H.D., and Turekian, K.K. (eds.). Amsterdam: Elsevier, pp. 1–35.Google Scholar
  19. Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., Hardie, L.A., and Demicco, R.V., 2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, 294, 1086–1088.Google Scholar
  20. Ludvigson, G.A., Gonzalez, L.A., Metzger, R.A., Witzke, B.J., Brenner, R.L., Murillo, A.P., and White, T.S., 1998. Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology, 26, 1039–1042.Google Scholar
  21. Ludvigson, G.A., Ufnar, D.F., Gonzalez, L.A., White, T.S., Phillips, P.L., Witzke, B.J., and Brenner, R.L., 2000. When good sphaeorosiderites go bad: Caveats in the application of a paleoclimate proxy. Geol. Soc. Am. Abstr. Prog., 32(7), pp. A–524.Google Scholar
  22. Maher, B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeog. Palaeoclim. Palaeoecol., 137, 25–54.Google Scholar
  23. Mallinson, D.J., Flower, B., Hine, A., Brooks, G., and Garza, R.M., 2003. Paleoclimate implications of high latitude precession-scale mineralogic fluctuations during early Oligocene Antarctic glaciation: The Great Australian Bight record. Glob. Planet. Change, 39, 257–269.Google Scholar
  24. McKeown, D.A.M., and Post, J.E., 2001. Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. Am. Min., 86, 701–713.Google Scholar
  25. McLane, M., 1995. Sedimentology, New York: Oxford University Press, 432p.Google Scholar
  26. Milnes, A.E., 1992. Calcrete. In Martini, I.P., and Chesworth, W. (eds.), Weathering Soils Paleosols. Amsterdam: Elsevier, Chap. 13, pp. 309–347.Google Scholar
  27. Montañez, I.P., 2002. Biological skeletal carbonate records changes in major-ion chemistry of paleo-oceans. Proc. Natl. Acad. Sci., 99 (25), 15852–15854.Google Scholar
  28. Morse, J.W., 2003. Formation and diagenesis of carbonate sediments. In Mackenzie, F.T. (ed.). Sediments, Diagenesis, and Sedimentary Rocks (vol. 7), Treatise of Geochemistry, Holland, H.D. and Turekian, K.K. (eds.). Amsterdam: Elsevier, pp. 67–85.Google Scholar
  29. Ohmoto, H., Watanabe, Y., and Kumazawa, K., 2004. Evidence from massive siderite beds for a CO2-rich atmosphere before ∼1.8 billion years ago. Nature, 429, 395–399.Google Scholar
  30. Parrish, J.T., 1998. Interpreting pre-Quaternary Climate from the Geologic Record, New York: Columbia University Press, 338p.Google Scholar
  31. Paytan, A., Kastner, M., and Chavez, F.P., 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274, 1355–1357.Google Scholar
  32. Raiswell, R., Buckley, F., Berner, R.A., and Anderson, T.F., 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J. Sed. Petrol., 58(5), 812–819.Google Scholar
  33. Reynolds, R.L., and King, J.W., 1995. Magnetic records of climate change. US National Report to IUGG, 1991–1994, Rev. Geophys., 33(Suppl. 95), RG00354.Google Scholar
  34. Robert, C., and Kennett, J.P., 1997. Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion: clay mineral and oxygen isotope evidence. Geology, 25, 587–590.Google Scholar
  35. Roberts, S., Spencer, M., Yang, R.J., and Krouse, H.R., 1997. Deciphering some unique paleotemperature indicators in halite-bearing saline lake deposits from Death Valley, California, USA. J. Paleolimnol., 17, 101–130.Google Scholar
  36. Roychoudhury, A.N., Kostka, J.E., and Van Cappellen, 2003. Pyritization: A palaeoenvironmental and redox proxy reevaluated. Estuar. Coast. Shelf Sci., 57, 1–11.Google Scholar
  37. Ruffell, A., McKinley, J.M., and Worden, R.H., 2002. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Phil. Trans. Royal Soc. Lond. A, 360, 675–693.Google Scholar
  38. Sheldon, N.D., and Retallack, G.J., 2002. Low oxygen levels in earliest Triassic soils. Geology, 30, 919–922.Google Scholar
  39. Stiles, C.A., Mora, C.I., and Driese, S.G., 2001. Pedogenic iron-manganese nodules in Vertisols: A new proxy for paleoprecipitation? Geology, 29, 943–946.Google Scholar
  40. Swainson I.P., and Hammond, R.P., 2001. Ikaite, CaCO3.6H2O: cold comfort for glendonites as paleothermometers. Am. Mineral., 86, 1530–1533.Google Scholar
  41. Tardy, Y., 1992. Diversity and terminology of lateritic profiles. In Martini, I.P., and Chesworth, W. (eds.), Weathering, Soils & Paleosols. Amsterdam: Elsevier, Chap. 15, pp. 379–405.Google Scholar
  42. Tardy, Y., and Roquin, C., 1992. Geochemistry and evolution of lateritic landscapes. In Martini, I.P., and Chesworth, W. (eds.), Weathering, Soils & Paleosols, Amsterdam: Elsevier, Chap. 16, pp. 407–443.Google Scholar
  43. Torii, T., and Ossaka, J., 1965. Antarcticite: a new mineral, calcium chloride hexahydrate, discovered in Antarctica. Science, 149, 975–977.Google Scholar
  44. Trauth, M.H., Deino, A., and Strecker, M.R., 2001. Response of the East African climate to orbital forcing during the last interglacial (130–117 ka) and the early last glacial (117–60 ka). Geology, 29, 499–502.Google Scholar
  45. Turchyn, A.V., and Schrag, D.P., 2004. Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science, 303, 2004–2007.Google Scholar
  46. Velde, B., 2003. Green clay minerals. In Mackenzie, F.T. (ed.), Sediments, Diagenesis, and Sedimentary Rocks (vol. 7), Treatise of Geochemistry, Holland, H.D. and Turekian, K.K. (eds.). Amsterdam: Elsevier, pp. 309–324.Google Scholar
  47. Warren, J., 1999. Evaporites: Their Evolution and Economics. Oxford, UK: Blackwell Science, Chap. 1, 19. p. 13, 19.Google Scholar
  48. Watson, A., 1992. Desert soils. In Martini, I.P., and Chesworth, W. (eds.), Weathering, Soils & Paleosols. Amsterdam: Elsevier, Chap.10, pp. 225–260.Google Scholar
  49. Yuretich, R., Melles, M., Sarata, B., and Grobe, H., 1999. Clay minerals in the sediments of Lake Baikal: A useful climate proxy. J. Sed. Res., 69, 588–596.Google Scholar
  50. Zhao, L., Ji, J., Chen, J., Liu, L., Chen, Y., and Balsam, W., 2005. Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle: Implications for monsoon reconstruction. Geophys. Res. Lett., 32, L20718. doi:10.1029/2005GL024145.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vivien Gornitz

There are no affiliations available