Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Laterite is an iron-rich, sub-aerial, weathering product, commonly believed to evolve as a result of intense, in situ substrate alteration under tropical or sub-tropical climatic conditions. It comprises an important subset of a wider range of ferruginous and related aluminous (i.e., bauxitic) weathering products, which include ferricretes and various iron-rich paleosols. Laterite weathering profiles often develop an indurated surface layer of resistant duricrust, forming laterally extensive sheets ca. 1–20 m in thickness (Figure L16). These lateritized surfaces are both chemically and physically resistant and may extend over areas of a few, to hundreds, or even thousands, of square kilometers.

Figure L16
figure 16_127

Laterite profile (ca. 40 m) exposed at the edge of a mesa (i.e., table-land) at Panchgani (17°55′N, 73°48′E), Maharashtra, India. Mechanically resistant upper layers of the laterite profile typically form a protective capping overlying less altered materials below, producing a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aleva, G.J.J., (compiler) 1994. Laterites. Concepts, Geology, Morphology and Chemistry. Wageningen: ISRIC.

    Google Scholar 

  • Bardossy, G., 1981. Palaeoenvironments of laterites and lateritic bauxites - effect of global tectonism on bauxite formation. In Proceedings of the International Seminar on Lateritisation Processes, Trivandrum, India 11–14 December, 1979. Rotterdam: Balkema, pp. 287–294.

    Google Scholar 

  • Bird, M.I., and Chivas, A.R., 1989. Stable isotope geochronology of the Australian regolith. Geochim. Cosmochim. Acta, 53, 3239–3256.

    Article  Google Scholar 

  • Bird, M.I., and Chivas, A.R., 1993. Geomorphic and palaeoclimatic implications of an oxygen-isotope chronology for Australian deeply weathered profiles, regolith. Aust. J. Earth Sci., 40, 345–348.

    Article  Google Scholar 

  • Borger, H., and Widdowson, M., 2001. Indian laterites, and lateritious residues of southern Germany: A petrographic, mineralogical, and geochemical comparison. Z. Geomorph. N.F., 45, 177–200.

    Google Scholar 

  • Bourman, R.P., and Ollier, C.D., 2002. A critique of the Schellmann definition and classification of “laterite.” Catena, 47, 117–131.

    Article  Google Scholar 

  • Brimhall, G.H., Lewis, C.J., Ague, J.J., Dietrich, W.E., Hampel, J., Teague, T., and Rix, P., 1991. Metal enrichment by deposition of chemically-mature aeolin dust. Nature, 333, 819–824.

    Article  Google Scholar 

  • Buchanan, F., 1807. A journey from Madras through the Countries of Mysore, Kanara, and Malabar, vol. 2. pp. 436–461; vol. 3. pp. 66, 89, 251, 258, 378. London: East India Co.

    Google Scholar 

  • Chadwick, O.A., Brimhall, G.H., and Hendricks, D.M., 1990. From a black to a gray box – mass balance interpretation during pedogenesis. Geomorphology, 3, 369–390.

    Article  Google Scholar 

  • DeQuincey, O., Chabaux, F., Clauer, N., Sigmarsson, O., Liewig, N., and Leprun, J-C., 2002. Chemical mobilizations in laterites: Evidence from trace elements and 238U- 234U- 230Th disequilibria. Geochim. Cosmochim. Acta, 66, 1197–1210.

    Article  Google Scholar 

  • Gutzmer, J., and Beukes N.J., 1998. Earliest laterites and possible evidence for terrestrial vegetation in the Early Proterozoic. Geology, 26, 263–266.

    Article  Google Scholar 

  • Kisakurek, B., Widdowson, M., and James, R.H., 2004. Behaviour of Li isotopes during continental weathering: The Bidar laterite profile, India. Chem. Geol., 212, 27–44.

    Article  Google Scholar 

  • McFarlane, M.J., 1976. Laterite and Landscape. London: Academic Press, 151pp.

    Google Scholar 

  • McFarlane, M.J., 1983. The temporal distribution of bauxitisation and its genetic implications. In Melfi, A.J., and Carvalho, A. (eds.), Proceedings of the II International Seminar on Lateritisation Processes, Brazil, 4–12 July, 1982. Balkema, Rotterdam: Sao Paulo, pp. 287–294.

    Google Scholar 

  • Newbold, T.J., 1844. Notes chiefly geological, across the Peninsula from Masultipatam to Goa, comprising remarks on the origin of regur and laterite: Occurrence of manganese veins in the latter and on certain traces of aqueous denudation on the surface of southern India. J. Asiat. Soc. Beng., 15, 204–213, 224–231, 380–396.

    Google Scholar 

  • Newbold, T.J., 1846. Summary of the geology of Southern India, Part VI: Laterite. R. Asiat. Soc., 227–240.

    Google Scholar 

  • Ollier, C.D., and Galloway, R.W., 1990. The laterite profile, ferricrete and unconformity. Catena, 17, 97–109.

    Article  Google Scholar 

  • Pistiner, J.S., and Henderson, G.M., 2003. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett., 214, 327–339.

    Article  Google Scholar 

  • Schellmann, W., 1986. A new definition of laterite. Geol. Surv. India, Mem. 120, 1–7.

    Google Scholar 

  • Schellmann, W., 2003. Discussion of “A critique of the Schellmann definition and classification of laterite.” Catena, 52, 77–79.

    Article  Google Scholar 

  • Summerfield, M.A., 1991. Global Geomorphology. Harlow: Longman, 537pp.

    Google Scholar 

  • Tardy, Y., and Roquin C., 1998. Dérive des continents, Paléoclimats et Altérations Tropicales, Editions BRGM Orléans France, 473pp.

    Google Scholar 

  • Thomas, M.F., 1994. Geomorphology in the Tropics. Chichester, UK: Wiley, 460pp.

    Google Scholar 

  • Tsekhovskii, Yu. G., Shchipakina, I.G., and Khramtsov, I.N., 1995. Lateritic eluvium and its redeposition products as indicators of Aptian-Turonian climate. Stratigr. Geol. Correl., 3(3), 285–294.

    Google Scholar 

  • Viers, J., and Wasserburg, G.J., 2004. Behavior of Sm and Nd in a lateritic profile. Geochimica and Cosmochimica Acta, 68(9), 2043–2054.

    Article  Google Scholar 

  • Widdowson, M. (ed.), 1997a. Palaeosurfaces: Recognition, reconstruction, and paleoenvironmental interpretation. Geological Society of London Special Publication, 120, 330pp.

    Google Scholar 

  • Widdowson, M., 1997b. Tertiary palaeosurfaces of the SW Deccan, Western India: Implications for passive margin uplift. In Widdowson, M. (ed) Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation. Geological Society of London Special Publication, 120, pp. 221–248.

    Google Scholar 

  • Widdowson, M., and Cox, K.G., 1996. Uplift and erosional history of the Deccan traps, India: Evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth Planet. Sci. Lett., 137, 57–69.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Widdowson, M. (2009). Laterite. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_127

Download citation

Publish with us

Policies and ethics