Earth’s climate has changed, within life-sustaining bounds, from warm to cool intervals, on scales from thousands to hundreds of millions of years. In the Phanerozoic Eon there have been three intervals of glaciation (Ordovician, Carboniferous and Cenozoic) lasting tens of millions of years, with ice down to sea level at mid-latitudes (Frakes et al., 1992; Crowell, 1999). These cool “icehouse” intervals were generally times of lower sea level, lower CO2 percentage in the atmosphere, less net photosynthesis and carbon burial, and less oceanic volcanism than during alternating “greenhouse” intervals (Fischer, 1986). The transitions from Phanerozoic icehouse to greenhouse intervals were synchronous with some biotic crises or mass extinction events, reflecting complex feedbacks between the biosphere and the hydrosphere.
Figure I8 summarizes Earth’s entire paleoclimate history, and Figure I9shows the better-known Phanerozoic Eon, with carbon, strontium and sulfur isotopic ratios that are...
This is a preview of subscription content, access via your institution.
Buying options






Bibliography
Amthor, J.E., Grotzinger, J.P., Schroeder, S., Bowring, S.A., Ramezani, J., Martin, M.W., and Matter, A., 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31, 431–434.
Barfod, G.H., Albarede, F., Knoll, A.H., Xiao, S., Telouk, P., Frei, R., and Baker, J., 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet. Sci. Lett., 201, 203–212.
Berger, W.H., 1982. Climate steps in ocean history—Lessons from the Pleistocene. In Berger, W.H., Crowell, J.C., et al. (eds), Climate in Earth History, Studies in Geophysics. Washington, DC: National Academy Press, pp. 43–54.
Berner, R.A., 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science, 249, 1382–1386.
Berner, R.A., 1991. A model of atmospheric CO2 over Phanerozoic time. Am. J. Sci., 291, 339–376.
Berner, R.A., and Kothavala, Z., 2001. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci., 301, 182–204.
Bowring, S., Myrow, P., Landing, E., Ramezani, J., and Grotzinger, J., 2003. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans. Geophys. Res. Abstr., 5, 13,219.
Brasier, M., McCarron, G., Tucker, R., Leather, J., Allen, P., and Shields, G., 2000. New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, 28, 175–178.
Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variations of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.
Calver, C.R., Black, L.P., Everard, J.L., and Seymour, D.B., 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32, 893–896.
Chen, C.-T.A., and Drake, E.T., 1986. Carbon dioxide increase in the atmosphere and oceans and possible effects on climate. Annu. Rev. Earth Planet. Sci., 14, 201–236.
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y., 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98.
Crowell, J.C., 1999. Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System. 192, Boulder, CO: Geological Society of America Memoir 106pp.
Crowley, T.J., and Berner, R.A., 2001. CO2 and climate change. Science, 292, 870–872.
Deynoux, M., Miller, J.M.G., Domack, E.W., Eyles, N., Fairchild, I.J., and Young, G.M. (eds.), 1994. Earth’s Glacial Record. Cambridge, UK: Cambridge University Press, 266pp.
Evans, D.A.D., 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci., 300, 347–433.
Fanning, C.M., and Dehler, C.M., 2005, Constraining depositional ages for Neoproterozoic siliciclastic sequences through detrital zircon ages: A ca. 770 maximum age for the lower Uinta Mountain Group. Geological Society of America Abstracts with Programs, 37.
Fanning, C.M., and Link, P.K., 2004. 700 Ma U-Pb SHRIMP ages for Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology, 32, 881–884.
Fischer, A.G., 1982. Long-term climatic oscillations recorded in stratigraphy. In Berger, W. (ed.), Climate in Earth History. National Research Council, Studies in Geophysics, Washington, DC: National Academy Press, pp. 97–104.
Fischer, A.G., 1986. Climatic rhythms recorded in strata. Annu. Rev. Earth Planet. Sci., 14, 351–376.
Fischer, A.G., and Arthur, M.A., 1977. Secular variations in the pelagic realm. In Cook, H.C., and Enos, P. (eds.), Deep Water Carbonate Environments. SEPM Special Publication 25, pp. 18–50.
Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate modes of the Phanerozoic. New York: Cambridge University Press, 274pp.
Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., and Kaufman, A.J., 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270, 598–604.
Harland, W.B., 1964. Critical evidence for a great infra-Cambrian glaciation. Geologische Rundschau, 54, 45–91.
Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., and Smith, D.G. (eds.), 1990. A Geologic Time Scale 1989. Cambridge, UK: Cambridge University Press, 263pp.
Hoffman, P.F., and Schrag, D.P., 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.
Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998. A Neoproterozoic snowball Earth. Science, 281, 1342–1346.
Hoffmann, K.-H., Condon, D.J., Bowring, S.A., and Crowley, J.L., 2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology, 32, 817–820.
Holser, W.T., Schidlowski, M., Mackenzie, F.T., and Maynard, J.B., 1988. Biogeochemical cycles of carbon and sulfur. In Gregor, C.B., Garrels, R.M., Mackenzie, F.T., and Maynard, J.B. (eds.), Chemical Cycles in the Evolution of the Earth. New York: Wiley, pp. 105–173.
Jiang, G., Kennedy, M.J., and Christie-Blick, N., 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426, 822–826.
Karlstrom, K.E., Bowring, S.A., Dehler, C.M., Knoll, A.H., Porter, S.M., DesMarais, D.J., Weil, A.B., Sharp, Z.D., Geissman, J.W., Elrick, M.B., Timmons, J.M., Crossey, L.J., and Davidek, K.L., 2000. Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology, 28, 619–622.
Kasting, J.F., 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res., 34, 205–229.
Kaufman, A.J., Knoll, A.H., and Narbonne, G.M., 1997. Isotopes, ice ages, and terminal Proterozoic Earth history. Proc. Natl. Acad. Sci., 94, 6600–6605.
Kennedy, M.J., Christie-Blick, N., and Sohl, L.E., 2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology, 29, 443–446.
Kirschvink, J.L., 1992. Late Proterozoic low-latitude global glaciation: The snowball Earth, In Schopf, J.W., and Klein, C. (eds.), The Proterozoic biosphere. New York: Cambridge University Press, pp. 51–52.
Knoll, A.K., 1991, End of the Proterozoic Eon. Sci. Am., 265, 64–73.
Knoll, A.K., 2000. Learning to tell Neoproterozoic time. Precambrian Res., 100, 3–20.
Knoll, A.H., and Walter, M.R., 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356, 673–677.
Kump, L.R., 2002. Reducing uncertainty about carbon dioxide as a climate driver. Nature, 419, 188–190.
Link, P.K., and Gostin, V.A., 1981. Facies and paleogeography of Sturtian glacial strata (Late Precambrian), South Australia. Am. J. Sci., 281, 353–374.
Lorentz, N.J., Corsetti, F.A., and Link, P.K., 2004. Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain Member of the Pocatello Formation, southeast Idaho: implications for Earth System behavior. Precambrian Res., 130, 57–70.
Lund, K., Aleinikoff, J.N., Evans, K.V., and Fanning, C.M., 2003. SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol. Soc. Am. Bull., 115, 349–372.
Narbonne, G.M., 2003. I.U.G.S. Subcommission on the Terminal Proterozoic System, 18th circular (September 2003). http://geol.queensu.ca/people/narbonne/trm-prot/(June 2004).
Niklas, K.J., Tiffney, B.H., and Knoll, A.H., 1985. Patterns in vascular land plant diversification: an analysis at the species level. In Valentine, J.W. (ed.), Phanerozoic Diversity Patterns: Profiles in macroevolution. Princeton, NJ: Princeton University Press, pp. 97–128.
Parrish, J.T., 1982. Upwelling and petroleum source beds, with reference to the Paleozoic. AAPG Bull., 66, 750–774.
Rampino, R., and Stothers, R.B., 1986. Geological periodicities and the galaxy. In Smoluchowski, R., Bahcall, J.N., and Matthews, M.S. (eds.), The Galaxy and the Solar System. Tucson, AZ: University of Arizona Press, pp. 241–259.
Ridgwell, A.J., Kennedy, M.J., and Calderia, K., 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science, 302, 859–862.
Rothman, D.H., 2002. Atmospheric carbon dioxide levels for the last 500 million years. Proc. Natl. Acad. Sci., 99, 4167–4171.
Shaviv, N.R., and Veizer, J., 2003. Celestial driver of Phanerozoic climate? GSA Today, 13, 4–10.
Sohl, L.E., Christie-Blick, N.M., and Kent, D.V., 1999. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull., 111, 1120–1139.
Stanley, S.M., and Hardie, L.A., 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol., 144, 3–19.
Vail, P.R., Mitchum, R.M. Jr., Todd, R.G., Widmier, J.M., Thompson, S., III, Sangree, J.B., Bubb, J.N., and Hatlelid, W.G., 1977. Seismic stratigraphy and global changes of sea level. In Payton, C.E. (ed.), Seismic stratigraphy—Application to Hydrocarbon Exploration. 26, Tulsa, OK: American Association of Petroleum Geologists Memoir pp. 29–212.
Veevers, J.J., 1990. Tectonic-climatic supercycle in the billion-year plate-tectonic eon: Permian Pangean icehouse alternates with Cretaceous dispersed continent Greenhouse. Sediment. Geol., 68, 1–16.
Veevers, J.J., 1994. Pangea: Evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments. In Klein, G.D. (ed.), Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. Geological Society of America Special Paper 288, Boulder, CO: Geological Society of America, pp. 13–23.
Veizer, J., Godderis, Y., and Francois, L.M., 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408, 698–701.
Williams, G.E., 1975. Late Precambrian glacial climate and the Earth’s obliquity. Geol. Mag., 112, 441–444.
Williams, M. and 2004. Dating sedimentary sequences: in situ U/Th-Pb microprobe dating of early diagenetic monazite and Ar–Ar dating of marcasite nodules: Case studies from Neoproterozoic black shales in the southwestern U.S. Geological Society of America Abstracts with Programs, 35, 595.
Worsley, T.R., Nance, R.D., and Moody, J.B., 1986. Tectonic cycles and the history of the Earth’s biogeochemical and paleooceanic record. Paleooceanography, 1, 233–263.
Zhang, S., Jiang, G., Zhang, J., Song, B., Kennedy, M.J., and Christie-Blick, N., 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 33, 473–476.
Zhou, C., Tucker, R.D., Xiao, S., Peng, Z., Yuan, X., and Chen, Z., 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32, 437–440.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag
About this entry
Cite this entry
Link, P.K. (2009). “Icehouse” (Cold) Climates. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_112
Download citation
DOI: https://doi.org/10.1007/978-1-4020-4411-3_112
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-4551-6
Online ISBN: 978-1-4020-4411-3
eBook Packages: Earth and Environmental ScienceReference Module Physical and Materials Science