Skip to main content

Ice Cores, Antarctica And Greenland

  • Reference work entry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Introduction

Polar ice results from the progressive densification of snow deposited at the surface of the ice sheet. The transformation of snow into ice generally occurs within the first 100 meters and takes from decades to millennia, depending on temperature and accumulation rate, to be completed. During the first stage of densification, recrystallization of the snow grains occurs until the closest dense packing stage is reached at relative densities of about 0.55–0.6, corresponding to the snow-firn transition. Then plastic deformation becomes the dominant process and the pores progressively become isolated from the surface atmosphere. The end product of this huge natural sintering experiment is ice, an airtight material. Because of the extreme climatic conditions, the polar ice is generally kept at negative temperatures well below the freezing point, a marked difference to the ice of temperate mountain glaciers.

Ice cores are cylinders of ice with a diameter of ∼10 cm. They are...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Bender, M., 2002. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planetary Sci. Lett., 204, 275–289.

    Google Scholar 

  • Berger, A.L., 1978. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367.

    Google Scholar 

  • Blunier, T., and Brook, E.J., 2001. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–112.

    Google Scholar 

  • Brook, E., and Wolff, E.W., 2006. The future of ice core science. Eos Trans. AGU, 87(4), 39.

    Google Scholar 

  • Dansgaard, W., Johnsen, S.J., Clausen, H.B., and Langway Jr., C.C. 1971. Climatic record revealed by the camp century ice core. In Turekian, K.K. (ed.), The Late Cenozoic Glacial Ages. New Haven, London: Yale University Press, pp. 37–56.

    Google Scholar 

  • Dansgaard, W., Clausen, H.B., Gundestrup, N., Johnsen, S.J., and Rygner, C., 1985. Dating and climatic interpretation of two deep Greenland ice cores. In Langway Jr., C.C., Oeschger, H., and Dansgaard, W. (eds.), Greenland Ice Core: Geophysics, Geochemistry and the Environment. Washington, DC: Geophysical Monograph. American Geophysical Union.

    Google Scholar 

  • EPICA Community Members, 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628.

    Google Scholar 

  • EPICA Community Members, 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444(7116), 195–198.

    Google Scholar 

  • Epstein, S., Sharp, R.P., and Gow, A.J., 1970. Antarctic ice sheet: stable isotope analyses of Byrd station cores and interhemispheric climatic implications. Science 168, 1570–1572.

    Google Scholar 

  • Goujon, C., Barnola, J.-M., and Ritz, C., 2003. Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. J. Geophys. Res., 108. doi:10.1029/2002JD003319.

    Google Scholar 

  • Gow, A.J., Ueda, H.T., and Garfield, D.E., 1968. Antarctic ice sheet: Preliminary results of first core hole to bedrock. Science 161, 1011–1013.

    Google Scholar 

  • Greenland Summit Ice Cores, 1997. J. Geophys. Res., 102(C12), 26315–26886.

    Google Scholar 

  • Hansen, B.L., and Langway Jr., C.C., 1966. Deep core drilling in ice and core analysis at camp century, Greenland, 1961–1966. Antarctic J. US, 1, 207–208.

    Google Scholar 

  • Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correira, A.C.M., and Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428, 261–285.

    Google Scholar 

  • North Greenland Ice Core Project Members, 2004. High-resolution record of Northern hemisphere climate extending into the last interglacial period. Nature, 431, 147–151.

    Google Scholar 

  • Parrenin, F., Jouzel, J., Waelbroeck, C., Ritz, C., and Barnola, J.-M., 2001. Dating the Vostok ice core by an inverse method. J. Geophys. Res., 106(D23), 31837–31851.

    Google Scholar 

  • Parrenin, F., Rémy, F., Ritz, C., Siegert, M.J., and Jouzel, J., 2004. New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core. J. Geophys. Res., 109. doi:10.1029/2004JD004561.

    Google Scholar 

  • Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.

    Google Scholar 

  • Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res., 111, D06102. doi:10.1029/2005JD006079.

    Google Scholar 

  • Raynaud, D., Lipenkov, V., Lemieux-Dudon, B., Loutre, M-F., Lhomme, N., 2007. The local insolation signature of air content in Antarctic ice: A new step toward an absolute dating of ice records. Earth and Planetory Science Letters, 261, 337–349.

    Google Scholar 

  • Watanabe, O., Jouzel, J., Johnsen, S., Parrenin, F., Shoji, H., and Yoshida, N., 2003. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature, 422, 509–512.

    Google Scholar 

  • Yiou, F., Raisbeck, G.M., Baumgartner, S., Beer, J., Hammer, C., Johnsen, J., Jouzel, J., Kubik, P.W., Lestringuez, J., Stievenard, M., Suter, M., and Yiou, P., 1997. Beryllium 10 in the Greenland ice core project ice core at summit, Greenland. J. Geophys. Res., 102, 26783–26794.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Raynaud, D., Parrenin, F. (2009). Ice Cores, Antarctica And Greenland. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_110

Download citation