Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Dendrochronology

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_41

Synonyms

Tree-ring dating

Definition

The word dendrochronology comprises three parts, originating from Greek “dendron” (tree), “chronos” (time), and -ology (study of), and is defined as “the science of dating tree rings” (Kaennel and Schweingruber, 1995, 65). It is a chronometric (“absolute”) dating technique that employs records of annual growth increments in trees to establish the calendar age of wood samples taken from living or nonliving trees and from wood that has been used by humans.

History

Interest in tree growth and the rings produced by this phenomenon has its origin in fifteenth century AD and possibly before. Leonardo da Vinci is often cited as the first notable scientist not only to write about tree growth but also to speculate that tree rings and environmental parameters (rainfall) in the growing season might be linked (Schweingruber, 1988; Speer, 2010). In the seventeenth century, the invention of the microscope paved the way for wood anatomical studies, and by the...

This is a preview of subscription content, log in to check access

Bibliography

  1. Abrams, M. D., and Nowacki, G. J., 2008. Native Americans as active and passive promoters of mast and fruit trees in the eastern USA. The Holocene, 18(7), 1123–1137.CrossRefGoogle Scholar
  2. Alestalo, J., 1971. Dendrochronological interpretation of geomorphic processes. Fennia, 105(1), 1–140.Google Scholar
  3. Arno, S. F., and Sneck, K. M., 1977. A Method for Determining Fire History in Coniferous Forests of the Mountain West. General Technical Report INT-42. Odgen: Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture.Google Scholar
  4. Babiński, L., 2011. Investigations on pre-treatment prior to freeze-drying of archaeological pine wood with abnormal shrinkage anisotropy. Journal of Archaeological Science, 38(7), 1709–1715.CrossRefGoogle Scholar
  5. Baillie, M. G. L., 1982. Tree-Ring Dating and Archaeology. Chicago: University of Chicago Press.Google Scholar
  6. Baillie, M. G. L., 1991. Suck in and smear: two related chronological problems of the 90s. Journal of Theoretical Archaeology, 2, 12–16.Google Scholar
  7. Baillie, M. G. L., 1995. A Slice Through Time: Dendrochronology and Precision Dating. London: Batsford.Google Scholar
  8. Baillie, M. G. L., 2002. Future of dendrochronology with respect to archaeology. Dendrochronologia, 20(1–2), 69–85.CrossRefGoogle Scholar
  9. Baillie, M. G. L., and Munro, M. A. R., 1988. Irish tree rings, Santorini and volcanic dust veils. Nature, 332(6162), 344–346.CrossRefGoogle Scholar
  10. Baillie, M. G. L., and Pilcher, J. R., 1973. A simple cross-dating program for tree-ring research. Tree-Ring Bulletin, 33, 7–14.Google Scholar
  11. Becker, B., 1993. An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. Radiocarbon, 35(1), 201–213.CrossRefGoogle Scholar
  12. Bégin, Y., 2001. Tree-ring dating of extreme lake levels at the subarctic–boreal interface. Quaternary Research, 55(2), 133–139.CrossRefGoogle Scholar
  13. Bell, M., Allen, J. R. L., Nayling, N., and Buckley, S., 2001. Mesolithic to Neolithic coastal environmental change c. 6500–3500 cal BC. Archaeology of the Severn Estuary, 12, 27–53.Google Scholar
  14. Bernabei, M., Bontadi, J., and Rognoni, G. R., 2010. A dendrochronological investigation of stringed instruments from the collection of the Cherubini conservatory in Florence, Italy. Journal of Archaeological Science, 37(1), 192–200.CrossRefGoogle Scholar
  15. Bill, J., Daly, A., Johnsen, Ø., and Dalend, K. S., 2012. DendroCT – dendrochronology without damage. Dendrochronologia, 30(3), 223–230.CrossRefGoogle Scholar
  16. Billamboz, A., 1996. Tree rings and pile-dwellings in southern Germany: following in the footsteps of Bruno Huber. In Dean, J. S., Meko, D. M., and Swetnam, T. W. (eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. Tucson: Radiocarbon, Department of Geosciences, University of Arizona, Tucson, pp. 471–483.Google Scholar
  17. Billamboz, A., 2008. Dealing with heteroconnections and short tree-ring series at different levels of dating in the dendrochronology of the Southwest German pile-dwellings. Dendrochronologia, 26(3), 145–155.CrossRefGoogle Scholar
  18. Bollschweiler, M., Stoffel, M., and Schneuwly, D. M., 2008. Dynamics in debris-flow activity on a forested cone – a case study using different dendroecological approaches. Catena, 72(1), 67–78.CrossRefGoogle Scholar
  19. Bonde, N., and Crumlin-Pedersen, O., 1990. The dating of Wreck 2, the longship, from Skuldelev, Denmark. NewsWARP, 7, 3–6.Google Scholar
  20. Bridge, M., 2011. Resource exploitation and wood mobility in northern European oak: Dendroprovenancing of individual timbers from the Mary Rose (1510/11–1545). The International Journal of Nautical Archaeology, 40(2), 417–423.CrossRefGoogle Scholar
  21. Bridge, M., 2012. Locating the origins of wood resources: a review of dendroprovenancing. Journal of Archaeological Science, 39(8), 2828–2834.CrossRefGoogle Scholar
  22. Briffa, K. R., 2000. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quaternary Science Reviews, 19(1–5), 87–105.CrossRefGoogle Scholar
  23. Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Harris, I. C., Jones, P. D., Shiyatov, S. G., and Vaganov, E. A., 2001. Low-frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research, [Atmospheres], 106(D3), 2929–2941.CrossRefGoogle Scholar
  24. Brown, P. M., 2007. A modified increment borer handle for coring in locations with obstructions. Tree-Ring Research, 63(1), 61–62.CrossRefGoogle Scholar
  25. Brown, D. M., and Baillie, M. G. L., 2012. Confirming the existence of gaps and depletions in the Irish oak tree-ring record. Dendrochronologia, 30(2), 85–91.CrossRefGoogle Scholar
  26. Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J., 2011. 2500 years of European climate variability and human susceptibility. Science, 331(6017), 578–582.CrossRefGoogle Scholar
  27. Campbell, L. J., and Laroque, C. P., 2007. Decay progression and classification in two old-growth forests in Atlantic Canada. Forest Ecology and Management, 238(1–3), 293–301.CrossRefGoogle Scholar
  28. Carrington, D., 2011. Climategate: hacked climate science emails. The Guardian online. http://www.theguardian.com/environment/2010/jul/07/climate-emails-question-answer
  29. Cherubini, P., Humbel, T., Beeckman, H., Gärtner, H., Mannes, D., Pearson, C., Schoch, W., Tognetti, R., and Lev-Yadun, S., 2013. Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece). PLoS ONE, 8(1), e54730. Open access.CrossRefGoogle Scholar
  30. IPCC (Intergovernmental Panel on Climate Change), (2007). Climate change 2007: working group I: the physical science basis. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch6s6-6.html
  31. Cook, E. R., and Kairiukstis, L. A. (eds.), 1990. Methods of Dendrochronology: Applications in the Environmental Science. Dordrecht: Kluwer Academic.Google Scholar
  32. Crone, A., and Fawcett, R., 1998. Dendrochronology, documents and the timber trade: new evidence for the building history of Stirling Castle, Scotland. Medieval Archaeology, 42, 68–87.CrossRefGoogle Scholar
  33. Čufar, K., Merela, M., and Erič, M., 2014. A Roman barge in the Ljubljanica river (Slovenia): wood identification, dendrochronological dating and wood preservation research. Journal of Archaeological Science, 44, 128–135.CrossRefGoogle Scholar
  34. Cutter, B. E., and Guyette, R. P., 1993. Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies. Journal of Environmental Quality, 22(3), 611–619.CrossRefGoogle Scholar
  35. D’Arrigo, R. D., and Jacoby, G. C., 1991. A 1000-year record of winter precipitation from northwestern Mexico, USA: a reconstruction from tree-rings and its relation to El Niño and the Southern Oscillation. The Holocene, 1(2), 95–101.CrossRefGoogle Scholar
  36. D’Arrigo, R. D., Cook, E. R., Jacoby, G. C., and Briffa, K. R., 1993. NAO and sea surface temperature signatures in tree-ring records from the North Atlantic sector. Quaternary Science Reviews, 12(6), 431–440.CrossRefGoogle Scholar
  37. Daly, A., and Nymoen, P., 2008. The Bøle ship, Skien, Norway – research history, dendrochronology and provenance. The International Journal of Nautical Archaeology, 37(1), 153–170.CrossRefGoogle Scholar
  38. De Ridder, M., Trouet, V., Van den Bulcke, J., Hubau, W., Van Acker, J., and Beeckman, H., 2013. A tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa. Trees, 27(5), 1225–1238.CrossRefGoogle Scholar
  39. Dean, J. S., 1993. Geoarchaeological perspectives on the past: chronological considerations. In Stein, J. K., and Linse, A. R. (eds.), Effects of Scale on Archaeological and Geoscientific Perspectives. Boulder: Geological Society of America. Geological Society of America Special Paper 283, pp. 59–65.CrossRefGoogle Scholar
  40. Dick, M., Porter, T. J., Pisaric, M. F. J., Wertheimer, È., deMontigny, P., Perreault, J. T., and Robillard, K.-L., 2014. A multi-century eastern white pine tree-ring chronology developed from salvaged river logs and its utility for dating heritage structures in Canada’s National Capital Region. Dendrochronologia, 32(2), 120–126.CrossRefGoogle Scholar
  41. Dittmar, C., Eißing, T., and Rothe, A., 2012. Elevation-specific tree-ring chronologies of Norway spruce and silver fir in southern Germany. Dendrochronologia, 30(2), 73–83.CrossRefGoogle Scholar
  42. Dumayne, L., and Barber, K. E., 1994. The impact of the Romans on the environment of northern England: pollen data from three sites close to Hadrian’s Wall. The Holocene, 4(2), 165–173.CrossRefGoogle Scholar
  43. Dumayne-Peaty, L., 1998. Human impact on the environment during the Iron Age and Romano-British times: Palynological evidence from three sites near the Antonine Wall, Great Britain. Journal of Archaeological Science, 25(3), 203–214.CrossRefGoogle Scholar
  44. Durand, S. R., Shelley, P. H., Antweiler, R. C., and Taylor, H. E., 1999. Trees, chemistry, and prehistory in the American Southwest. Journal of Archaeological Science, 26(2), 185–203.CrossRefGoogle Scholar
  45. Eckstein, D., 1969. Entwicklung und Anwendung der Dendrochronologie zur Alterbestimmung der Siedlung Haithabu. Ph.D. dissertation, Hamburg University, Hamburg.Google Scholar
  46. Eckstein, D., and Wrobel, S., 2007. Dendrochronological proof of origin of historic timber – retrospect and perspectives. Proceedings of the symposium on tree rings in archaeology, climatology and ecology, April 20–22, 2006 in Tervuren, Belgium. Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, 74, 8–20.Google Scholar
  47. Eckstein, D., Wazny, T., Bauch, J., and Klein, P., 1986. New evidence for the dating of Netherlandish paintings. Nature, 320(6061), 465–466.CrossRefGoogle Scholar
  48. Eckstein, J., Leuschner, H. H., Giesecke, T., Shumilovskikh, L., and Bauerochse, A., 2010. Dendroecological investigations at Venner Moor (northwest Germany) document climate-driven woodland dynamics and mire development in the period 2450–2050 BC. The Holocene, 20(2), 231–244.CrossRefGoogle Scholar
  49. English Heritage, 1998. Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates. Peterborough: English Heritage. http://www.english-heritage.org.uk/publications/dendrochronology-guidelines/
  50. English Heritage, 2010. Waterlogged Wood: Guidelines on the Recording, Sampling, Conservation and Curation of Waterlogged Wood, 3rd edn. Peterborough: English Heritage. http://www.english-heritage.org.uk/publications/waterlogged-wood/
  51. Esper, J., Frank, D., Büntgen, U., Verstege, A., Hantemirov, R. M., and Kirdyanov, A. V., 2009. Trends and uncertainties in Siberian indicators of 20th century warming. Global Change Biology, 16(1), 386–398.CrossRefGoogle Scholar
  52. Fantucci, R., 2007. Dendrogeomorphological analysis of shore erosion along Bolsena lake (Central Italy). Dendrochronologia, 24(2–3), 69–78.CrossRefGoogle Scholar
  53. Ferguson, C. W., and Graybill, D. A., 1983. Dendrochronology of bristlecone pine; a progress report. Radiocarbon, 25(2), 287–288.CrossRefGoogle Scholar
  54. Friedrich, M., Kromer, B., Hofmann, J., and Kaiser, K. F., 1998. Paleo-environment and radiocarbon calibration as derived from lateglacial/early Holocene tree-ring chronologies. Quaternary International, 61(1), 27–39.CrossRefGoogle Scholar
  55. Friedrich, M., Kromer, B., Spurk, H., Hofmann, J., and Kaiser, K. F., 1999. Paleo-environment and radiocarbon calibration as derived from lateglacial/early Holocene tree-ring chronologies. Quaternary International, 61(1), 27–39.CrossRefGoogle Scholar
  56. Fritts, H. C., 1976. Tree Rings and Climate. London: Academic.Google Scholar
  57. Génova, M., Ballesteros-Cánovas, J. A., Díez-Herrero, A., and Martínez-Callejo, B., 2011. Historical floods and dendrochronological dating of a wooden deck in the Old Mint of Segovia, Spain. Geoarchaeology, 26(5), 786–808.CrossRefGoogle Scholar
  58. Genries, A., Morin, X., Chauchard, S., and Carcaillet, C., 2009. The function of surface fires in the dynamics and structure of a formerly grazed old subalpine forest. Journal of Ecology, 97(4), 728–741.CrossRefGoogle Scholar
  59. Grabner, M., Wimmer, R., and Weichenberger, J., 2004. Reconstructing the history of log-drifting in the Reichraminger Hintergebirge, Austria. Dendrochronologia, 21(3), 131–137.CrossRefGoogle Scholar
  60. Grissino-Mayer, H. D., 2003. A manual and tutorial for the proper use of an increment borer. Tree-Ring Research, 59(2), 63–79.Google Scholar
  61. Grissino-Mayer, H. D., (2014). The science of tree rings (formerly, The Ultimate Tree-Ring Web Site); http://web.utk.edu/~grissino/
  62. Guyette, R. P., Cutter, B. E., and Henderson, G. S., 1991. Long-term correlations between mining activity and levels of lead and cadmium in tree-rings of eastern red-cedar. Journal of Environmental Quality, 20(1), 146–150.CrossRefGoogle Scholar
  63. Haneca, K., Wazny, T., Van Acker, J., and Beeckman, H., 2005. Provenancing Baltic timber from art historical objects: success and limitations. Journal of Archaeological Science, 32(2), 261–271.CrossRefGoogle Scholar
  64. Haneca, K., Čufar, K., and Beeckman, H., 2009. Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science, 36(1), 1–11.CrossRefGoogle Scholar
  65. Hantemirov, R. M., and Shiyatov, S. G., 2002. A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia. The Holocene, 12(6), 717–726.CrossRefGoogle Scholar
  66. Hayashida, F. M., 2005. Archaeology, ecological history, and conservation. Annual Review of Anthropology, 34, 43–65.CrossRefGoogle Scholar
  67. Hillam, J., and Groves, C., 1996. Tree-ring research at Windsor Castle: aims and initial results. In Dean, J. S., Meko, D. M., and Swetnam, T. W. (eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. Tucson: Radiocarbon, Department of Geosciences, University of Arizona, Tucson, pp. 515–523.Google Scholar
  68. Hillam, J., Groves, C. M., Brown, D. M., Baillie, M. G. L., Coles, J. M., and Coles, B. J., 1990. Dendrochronology of the English Neolithic. Antiquity, 64(243), 210–220.CrossRefGoogle Scholar
  69. Hoffsummer, P., 2002. Les charpentes du XIe au XIXe siècle: Typologie et évolution en France du Nord et en Belgique. Paris: Monum, Éditions du Patrimoine.Google Scholar
  70. Hogg, A., Lowe, D. J., Palmer, J., Boswijk, G., and Bronk Ramsey, C., 2012. Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set. The Holocene, 22(4), 439–449.CrossRefGoogle Scholar
  71. Holmes, R. L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69–78.Google Scholar
  72. Jacoby, G. C., Bunker, D. E., and Benson, B. E., 1997. Tree-ring evidence for an A.D. 1700 Cascadia earthquake in Washington and northern Oregon. Geology, 25(11), 999–1002.CrossRefGoogle Scholar
  73. Jacoby, G. C., Workman, K. W., and D’Arrigo, R. D., 1999. Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews, 18(12), 1365–1371.CrossRefGoogle Scholar
  74. Jansma, E., van Lanen, R. J., Sturgeon, K., Mohlke, S., and Brewer, P. W., 2012. TRiDaBASE: a stand-alone database for storage, analysis and exchange of dendrochronological metadata. Dendrochronologia, 30(3), 209–211.CrossRefGoogle Scholar
  75. Kaennel, M., and Schweingruber, F. H., 1995. Multilingual Glossary of Dendrochronology: Terms and Definitions in English, German, French, Spanish, Italian, Portuguese and Russian. Berne: Paul Haupt.Google Scholar
  76. Kagawa, A., and Leavitt, S. W., 2010. Stable carbon isotopes of tree rings as a tool to pinpoint the geographic origin of timber. Journal of Wood Science, 56(3), 175–183.CrossRefGoogle Scholar
  77. Kaiser, K. F., Friedrich, M., Miramont, C., Kromer, B., Sgier, M., Schaub, M., Boeren, I., Remmele, S., Talamo, S., Guibal, F., and Sivan, O., 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute – an inventory. Quaternary Science Reviews, 36, 78–90.CrossRefGoogle Scholar
  78. Kames, S., Tardif, J. C., and Bergeron, Y., 2011. Anomalous earlywood vessel lumen area in black ash (Fraxinus nigra Marsh.) tree rings as a potential indicator of forest fires. Dendrochronologia, 29(2), 109–114.CrossRefGoogle Scholar
  79. Lageard, J. G. A., and Drew, I. B., 2008. Hydrogeomorphic control on tree growth responses in the Elton area of the Cheshire Saltfield, UK. Geomorphology, 95(3–4), 158–171.CrossRefGoogle Scholar
  80. Lageard, J. G. A., and Ryan, P. A., 2013. Microscopic fungi as subfossil woodland indicators. The Holocene, 23(7), 990–1001.CrossRefGoogle Scholar
  81. Lageard, J. G. A., Thomas, P. A., and Chambers, F. M., 2000. Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1–4), 87–99.CrossRefGoogle Scholar
  82. Lageard, J. G. A., Howell, J. A., Rothwell, J. J., and Drew, I. B., 2008. The utility of Pinus sylvestris L. in dendrochemical investigations: pollution impact of lead mining and smelting in Darley Dale, Derbyshire, UK. Environmental Pollution, 153(2), 284–294.CrossRefGoogle Scholar
  83. LaMarche, V. C., Jr., and Hirschboeck, K. K., 1984. Frost rings in trees as records of major volcanic eruptions. Nature, 307(5947), 121–126.CrossRefGoogle Scholar
  84. Lewis, D., and Smith, D., 2004. Dendrochronological mass balance reconstruction, Strathcona Provincial Park, Vancouver Island, British Columbia, Canada. Arctic, Antarctic, and Alpine Research, 36(4), 598–606.CrossRefGoogle Scholar
  85. Luckman, B. H., 1988. Dating the moraines and recession of Athabasca and Dome Glaciers, Alberta, Canada. Arctic and Alpine Research, 20(1), 40–54.CrossRefGoogle Scholar
  86. Mann, M. E., Bradley, R. S., and Hughes, M. K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392(6678), 779–787.CrossRefGoogle Scholar
  87. McCarroll, D., and Loader, N. J., 2004. Stable isotopes in tree rings. Quaternary Science Reviews, 23(7–8), 771–801.CrossRefGoogle Scholar
  88. McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., and Edouard, J.-L., 2002. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arctic, Antarctic, and Alpine Research, 34(4), 450–453.CrossRefGoogle Scholar
  89. Miles, D., 2006. Refinements in the interpretation of tree-ring dates for oak building timbers in England and Wales. Vernacular Architecture, 37(1), 84–96.CrossRefGoogle Scholar
  90. Mills, C. M., and Crone, A., 2012. Dendrochronological evidence for Scotland’s native timber resources over the last 1000 years. Scottish Forestry, 66(1), 18–33.Google Scholar
  91. Müllerová, J., Szabó, P., and Hédl, R., 2014. The rise and fall of traditional forest management in southern Moravia: a history of the past 700 years. Forest Ecology and Management, 331, 104–115.CrossRefGoogle Scholar
  92. Munaut, A. V., 1966. Recherches dendrochronologiques sur Pinus silvestris: II. Première application des méthodes dendrochronologiques à l’étude de pins sylvestres sub-fossiles (Terneuzen, Pays-Bas). Agricultura, 2e Serie, 14(3), 361–389.Google Scholar
  93. Munro, M. A. R., 1983. An improved algorithm for cross-dating tree-ring series. Tree-Ring Bulletin, 44, 17–27.Google Scholar
  94. Nash, S. E., 1999. Time, Trees, and Prehistory: Tree-Ring Dating and the Development of North American Archaeology, 1914–1950. Salt Lake City: University of Utah Press.Google Scholar
  95. Nayling, N., and Susperregi, J., 2014. Iberian dendrochronology and the Newport medieval ship. International Journal of Nautical Archaeology, 43(2), 279–291.CrossRefGoogle Scholar
  96. Neuwirth, B., Schweingruber, F. H., and Winiger, M., 2007. Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia, 24(2–3), 79–89.CrossRefGoogle Scholar
  97. Nicolussi, K., and Patzelt, G., 1996. Reconstructing glacier history in Tyrol by means of tree-ring investigations. Zeitschrift für Gletscherkunde und Glazialgeologie, 32, 207–215.Google Scholar
  98. Nicolussi, K., Kaufmann, M., Patzelt, G., van der Plicht, J., and Thurner, A., 2005. Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Vegetation History and Archaeobotany, 14(3), 221–234.CrossRefGoogle Scholar
  99. Okochi, T., Hoshino, Y., Fujii, H., and Mitsutani, T., 2007. Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography. Dendrochronologia, 24(2–3), 155–164.CrossRefGoogle Scholar
  100. Patrick, G. J., and Farmer, J. G., 2006. A stable lead isotopic investigation of the use of sycamore tree rings as a historical biomonitor of environmental lead contamination. Science of the Total Environment, 362(1–3), 278–291.CrossRefGoogle Scholar
  101. Payette, S., and Delwaide, A., 1991. Variations séculaires du niveau d’eau dans le basin de la rivière Boniface (Québec nordique): Une analyse dendroécologique. Géographie Physique et Quaternaire, 45(1), 59–67.CrossRefGoogle Scholar
  102. Payne, R. J., Edwards, K. J., and Blackford, J. J., 2013. Volcanic impacts on the Holocene vegetation history of Britain and Ireland? A review and meta-analysis of the pollen evidence. Vegetation History and Archaeobotany, 22(2), 153–164.CrossRefGoogle Scholar
  103. Pelfini, M., Santilli, M., Leonelli, G., and Bozzoni, M., 2007. Investigating surface movements of debris-covered Miage Glacier, Western Italian Alps, using dendroglaciological analysis. Journal of Glaciology, 53(180), 141–152.CrossRefGoogle Scholar
  104. Pilcher, J. R., Baillie, M. G. L., Schmidt, B., and Becker, B., 1984. A 7272-year tree-ring chronology for western Europe. Nature, 312(5990), 150–152.CrossRefGoogle Scholar
  105. Pluskowski, A., Boas, A. J., and Gerrard, C., 2011. The ecology of crusading: investigating the environmental impact of the holy war and colonisation at the frontiers of medieval Europe. Medieval Archaeology, 55, 192–225.CrossRefGoogle Scholar
  106. Regent Instruments, Inc., 2014. WinDENDRO: An Image Analysis System for Tree-Rings Analysis. http://www.regentinstruments.com/assets/windendro_about.html
  107. Reynolds, A. C., Betancourt, J. L., Quade, J., Patchett, P. J., Dean, J. S., and Stein, J., 2005. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico. Journal of Archaeological Science, 32(7), 1061–1075.CrossRefGoogle Scholar
  108. Richardson, D. M., 2000. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.Google Scholar
  109. Rinne, K. T., Loader, N. J., Switsur, V. R., and Waterhouse, J. S., 2013. 400-year May-August precipitation reconstruction for Southern England using oxygen isotopes in tree rings. Quaternary Science Reviews, 60, 13–25.CrossRefGoogle Scholar
  110. Robertson, I., Froyd, C. A., Walsh, R. P. D., Newbery, D. M., Woodborne, S., and Ong, R. C., 2004. The dating of dipterocarp tree rings: establishing a record of carbon cycling and climatic change in the tropics. Journal of Quaternary Science, 19(7), 657–664.CrossRefGoogle Scholar
  111. Rocky Mountain Tree-Ring Research, (2013). Oldlist – a database of ancient trees. http://www.rmtrr.org/oldlist.htm
  112. Saas-Klaassen, U., 2002. Dendroarchaeology: successes in the past and challenges for the future. Dendrochronologia, 20(1–2), 87–93.CrossRefGoogle Scholar
  113. Sass-Klaassen, U., Vernimmen, T., and Baittinger, C., 2008. Dendrochronological dating and provenancing of timber used as foundation piles under historic buildings in The Netherlands. International Biodeterioration and Biodegradation, 61(1), 96–105.CrossRefGoogle Scholar
  114. Schöne, B. R., and Schweingruber, F. H., 2001. Dendrochronologische Untersuchungen zur Verwaldung der Alpen am Beispiel eines inneralpinen Trockentals (Ramosch, Unterengadin, Schweiz). Botanica Helvetica, 111(2), 151–168.Google Scholar
  115. Schulthess, J., 1990. Der Einfluss von Entwässerung auf die Bewaldung eines Hochmoores: Eine Studie zur rezenten Bewaldungsentwicklung am Etang de la Gruère (JU). Diplomarbeit, Geographisches Institut Universität Zürich.Google Scholar
  116. Schweingruber, F. H., 1983. Tree Rings: Basics and Applications of Dendrochronology, 1st edn. Dordrecht: D. Reidel.Google Scholar
  117. Schweingruber, F. H., 1988. Tree Rings: Basics and Applications of Dendrochronology. Dordrecht: D. ReidelGoogle Scholar
  118. Schweingruber, F. H., 1996. Tree Rings and Environment Dendroecology. Berne: Paul Haupt.Google Scholar
  119. Schweingruber, F. H., Eckstein, D., Serre-Bachet, F., and Bräker, O. U., 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8, 9–38.Google Scholar
  120. Scuderi, L. A., 1993. A 2000-year tree-ring record of annual temperatures in the Sierra Nevada mountains. Science, 259(5100), 1433–1436.CrossRefGoogle Scholar
  121. Sheppard, P. R., (2014). ‘Try skeleton plotting for yourself!’ An interactive Java-language application. Cross dating tree rings using skeleton plotting. http://www.ltrr.arizona.edu/skeletonplot/introcrossdate.htm.
  122. Shroder, J. F., Jr., 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research, 9(2), 168–185.CrossRefGoogle Scholar
  123. Shumilov, O. I., Kasatkina, E. A., Lukina, N. V., Kirtsideli, I. Y., and Kanatjev, A. G., 2007. Paleoclimatic potential of the northernmost juniper trees in Europe. Dendrochronologia, 24(2–3), 123–130.CrossRefGoogle Scholar
  124. Smiley, T. L., 1958. The geology and dating of Sunset Crater, Flagstaff, Arizona. In Anderson, R. Y., and Harshbarger, J. W. (eds.), Guidebook of the Black Mesa Basin, Northeastern Arizona: Ninth Field Conference, October 16, 17, and 18, 1958. Arizona: New Mexico Geological Society, pp. 186–190.Google Scholar
  125. Smith, D. J., and Lewis, D., 2007. Dendroglaciology. In Elias, S. A. (ed.), Encyclopedia of Quaternary Science. Amsterdam: Elsevier, Vol. 2, pp. 986–994.Google Scholar
  126. Smith, K. T., and Shortle, W. C., 1996. Tree biology and dendrochemistry. In Dean, J. S., Meko, D. M., and Swetnam, T. W. (eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. Tucson: Radiocarbon, Department of Geosciences, University of Arizona, pp. 629–635.Google Scholar
  127. Sorg, A., Bugmann, H., Bollschweiler, M., and Stoffel, M., 2010. Debris-flow activity along a torrent in the Swiss Alps: minimum frequency of events and implications for forest dynamics. Dendrochronologia, 28(4), 215–223.CrossRefGoogle Scholar
  128. Speer, J. H., 2010. Fundamentals of Tree-Ring Research. Tucson: University of Arizona Press.Google Scholar
  129. Stahle, D. W., Cook, E. R., Cleaveland, M. K., Therrell, M. D., Meko, D. M., Grissino-Mayer, H. D., Watson, E., and Luckman, B. H., 2000. Tree ring data document 16th century megadrought over North America. EOS. Transactions of the American Geophysical Union, 81(12), 121–125.CrossRefGoogle Scholar
  130. Stoffel, M., Schneuwly, D., Bollschweiler, M., Lièvre, I., Delaloye, R., Myint, M., and Monbaron, M., 2005. Analyzing rockfall activity (1600–2002) in a protection forest – a case study using dendrogeomorphology. Geomorphology, 68(3–4), 224–241.CrossRefGoogle Scholar
  131. Swetnam, T. W., and Baisan, C. H., 1996. Historical fire regime patterns in the southwestern United States since A.D. 1700. In Allen, C. D. (ed.), Fire Effects on Southwestern Forests: Proceedings of the Second La Mesa Fire Symposium. Los Alamos, New Mexico, 29–31 March 1994. USDA Forest Service General Technical Report RM-GTR-286. Fort Collins: US Department of Agriculture Forest Service, Rocky Mountain Forest and Range Experiment Station, pp. 11–32.Google Scholar
  132. Swetnam, T. W., Allen, C. D., and Betancourt, J. L., 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications, 9(4), 1189–1206.CrossRefGoogle Scholar
  133. Thompson, M., 2008. The White War: Life and Death on the Italian Front 1915–1919. London: Faber and Faber.Google Scholar
  134. Timberlake, S., and Prag, A. J. N. W. (eds.), 2005. The Archaeology of Alderley Edge: Survey, Excavation and Experiment in an Ancient Mining Landscape. Oxford: J. and E. Hedges. British Archaeological Reports, British Series 396.Google Scholar
  135. Turney, C. S. M., Fifield, L. K., Hogg, A. G., Palmer, J. G., Hughen, K., Baillie, M. G. L., Galbraith, R., Ogden, J., Lorrey, A., Tims, S. G., and Jones, R. T., 2010. The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the last glacial interval (60,000–11,700 years ago). Quaternary Science Reviews, 29(27–28), 3677–3682.CrossRefGoogle Scholar
  136. Tyers, I., 1999. Dendro for Windows Program Guide, 2nd edn. Archaeological Research and Consultancy at the University of Sheffield, ARCUS Report 500.Google Scholar
  137. Tyers, I., 2012. Dendrochronological samples of structural timbers. In Arrowsmith, P., and Power, D. (eds.), Roman Nantwich: A Salt-Making Settlement: Excavations at Kingsley Fields 2002. Oxford: Archaeopress. British Archaeological Reports, British Series 557, pp. 150–151.Google Scholar
  138. VIAS, Vienna Institute of Archaeological Science, 2005. Video Time Table. Installation and Instruction Manual. Rev. 2.1. Vienna: VIASGoogle Scholar
  139. Vreugdenhil, S. J., Kramer, K., and Pelsma, T., 2006. Effects of flooding duration, -frequency and -depth on the presence of saplings of six woody species in north-west Europe. Forest Ecology and Management, 236(1), 47–55.CrossRefGoogle Scholar
  140. Walker, M. J. C., 2005. Quaternary Dating Methods. Chichester: Wiley.Google Scholar
  141. Watmough, S. A., 1999. Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environmental Pollution, 106(3), 391–403.CrossRefGoogle Scholar
  142. Watmough, S. A., and Hutchinson, T. C., 2002. Historical changes in lead concentrations in tree-rings of sycamore, oak and Scots pine in north-west England. Science of the Total Environment, 293(1V3), 85–96.CrossRefGoogle Scholar
  143. Wils, T. H. G., Sass-Klaassen, U. G. W., Eshetu, Z., Bräuning, A., Gebrekirstos, A., Couralet, C., Robertson, I., Touchan, R., Koprowski, M., Conway, D., Briffa, K. R., and Beeckman, H., 2011. Dendrochronology in the dry tropics: the Ethiopian case. Trees, 25(3), 345–354.CrossRefGoogle Scholar
  144. Woodhouse, C. A., Pederson, G. T., and Gray, S. T., 2011. An 1800-yr record of decadal-scale hydroclimatic variability in the upper Arkansas River basin from bristlecone pine. Quaternary Research, 75(3), 483–490.CrossRefGoogle Scholar
  145. Worbes, M., 2002. One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia, 20(1–2), 217–231.CrossRefGoogle Scholar
  146. Wunder, J., Reineking, B., Hillgarter, F.-W., Bigler, C., and Bugmann, H., 2011. Long-term effects of increment coring on Norway spruce mortality. Canadian Journal of Forest Research, 41(12), 2326–2336.CrossRefGoogle Scholar
  147. Yadav, R. R., 1992. Dendroindications of recent volcanic eruptions in Kamchatka, Russia. Quaternary Research, 38(2), 260–264.CrossRefGoogle Scholar
  148. Yamaguchi, D. K., Hoblitt, R. P., and Lawrence, D. B., 1990. A new tree-ring date for the ‘floating island’ lava flow, Mount St. Helens, Washington. Bulletin of Volcanology, 52(7), 545–550.CrossRefGoogle Scholar
  149. Yanosky, T. M., 1983. Evidence of Floods on the Potomac River from Anatomical Abnormalities in the Wood of Flood-Plain Trees. Washington, DC: US Government Printing Office. US Geological Survey Professional Paper 1296.Google Scholar
  150. Zielinski, G. A., and Germani, M. S., 1998. New ice-core evidence challenges the 1620s BC age for the Santorini (Minoan) eruption. Journal of Archaeological Science, 25(3), 279–289.CrossRefGoogle Scholar
  151. Zielonka, T., Holeksa, J., and Ciapała, S., 2008. A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland. Dendrochronologia, 26(3), 173–183.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Division of Geography and Environmental Management, School of Science and the Environment, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK