Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky

Landslide Triggered Tsunami, Displacement Wave

  • Reginald L. Hermanns
  • Jean-Sébastien L’Heureux
  • Lars H. Blikra
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_95


Landslide-triggered tsunami (see entry  Tsunami), displacement wave, non-seismic tsunami, and other terms such as surface wave, mega-tsunami, giant wave (see also titles in reference list) or even seiche have been used (e.g., Stone, 2009), although these waves are not standing oscillations in a (semi)closed basin.

The term “landslide-triggered tsunami” is a widespread term and has been used for waves caused by the impact of a landslide (see entry  Landslide) into a water body or caused by a subaqueous landslide, whereas the term “displacement wave” has been used mainly for rock and/or ice avalanche/fall triggered waves in mountain lakes.


The term “tsunami” is Japanese and translates as “sudden wave in a harbor,” referring to waves not visible on the open water which build up near the shore. It is used for earthquake-triggered waves (seismic tsunami) and waves triggered by the displacement of water by mass movements (see entry  Mass Movement) or asteroid impact...

This is a preview of subscription content, log in to check access.


  1. Blikra, L. H., 2008. The Åknes rockslide; monitoring, threshold values and early-warning. In Zuyu, C., Jian-Min, Z., Ken, H., Fa-Quan, W., and Zhong-Kui, L. (eds.), Landslides and Engineered Slopes. From the Past to the Future. Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, June 30-July 4, Xi’an, China, Taylor and Francis, 1850 pp. ISBN 9780415411967.Google Scholar
  2. Blikra, L., Longva, O., Harbitz, C., and Løvholt, F., 2005. Quantification of rock-avalanche and tsunami hazard in Storfjorden, western Norway. In Senneset, K., Flaate, K., and Larsen, J. O. (eds.), Landslides and Avalanches. London: Taylor & Francis, pp. 57–63.Google Scholar
  3. Blikra, L. H., Longva, O., Braathen, A., Anda, E., Dehls, J. F., and Stalsberg, K., 2006. Rock slope failures in Norwegian fjord areas: examples, spatial distribution and temporal pattern. In Evans, S. G., Scaraascia Mugnozza, G., Strom, A., and Hermanns, R. L. (eds.), Landslides from Massive Rock Slope Failures. Dodrecht: Springer, pp. 475–496.CrossRefGoogle Scholar
  4. Bondevik, S., Mangerud, J., Dawson, S., Sawson, A., and Lohne, O., 2003. Record-breaking height for 8000-year-old tsunami in the North Atlantic. EOS, Transactions, American Geophysical Union, 84, 289.CrossRefGoogle Scholar
  5. Bondevik, S., Løvholt, F., Harbitz, C., Mangerud, J., Dawson, A., and Svendsen, J. I., 2005. The Storegga slide tsunami; comparing field observations with numerical simulations. Marine and Petroleum Geology, 22, 195–208.CrossRefGoogle Scholar
  6. Bryn, P., Berg, K., Forsberg, C. F., Solheim, A., and Lien, R., 2005. Explaining the Storegga slide. Marine and Petroleum Geology, 22, 11–19.CrossRefGoogle Scholar
  7. Bugge, T., Belderson, R. H., and Kenyon, N. H., 1988. The Storegga slide. Philosophical Transactions of the Royal Society of London, 325, 357–388.CrossRefGoogle Scholar
  8. Day, S. J., Carracedo, J. C., Guillou, H., and Gravestock, P., 1999. Recent structural evolution of the Cumbre Vieja Volcano, La Palma, Canary Islands; volcanic rift zone reconfiguration as a precursor to volcano flank instability? Journal of Volcanology and Geothermal Research, 94, 135–167.CrossRefGoogle Scholar
  9. Evans, S. G., 2001. Landslides. In Brooks, G. R. (ed.), A Synthesis of Geological Hazard in Canada. Ottawa: Geological Survey of Canada. Geological Survey of Canada Bulletin, Vol. 548, pp. 151–177.Google Scholar
  10. Graziani, L., Maramai, A., and Tinti, A., 2006. A revision of the 1783–1784 Calabrian (southern Italy) tsunamis. Natural Hazards and Earth System Science, 6, 1053–1060.CrossRefGoogle Scholar
  11. Grimstad, E., and Nesdal, S., 1990. The Loen rockslides – a historical review. In Barton, M., and Stephansson, W. (eds.), Rock Joints. Rotterdam: Balkema, pp. 1–6.Google Scholar
  12. Harbitz, C. B., 1992. Model simulations of tsunamis generated by the Storegga slides. Marine Geology, 105, 1–21.CrossRefGoogle Scholar
  13. Harbitz, C. B., Glimsdal, S., Bazin, S., Zamora, N., Løvholt, F., Bungum, H., Smebye, H., Gauer, P., and Kjekstad, O., 2012. Tsunami hazard in the Caribbean: regional exposure derived from credible worst case scenarios. Continental Shelf Research, 38, 1–23, doi:10.1016/j.csr.2012.02.006.CrossRefGoogle Scholar
  14. Heezen, B. C., Ericsson, D. B., and Ewing, M., 1954. Further evidence of a turbidity current following the 1929 grand banks earthquake. Deep Sea Research, 1, 193–202.CrossRefGoogle Scholar
  15. Hendron, A. J., Jr., and Patton, F. D., 1987. The Vaiont Slide; a geotechnical analysis based on new geologic observations of the failure surface. Engineering Geology, 24, 475–491.CrossRefGoogle Scholar
  16. Hermanns, R. L., Niedermann, S., Ivy-Ochs, S., and Kubik, P. W., 2004. Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) – evidence from surface exposure dating and stratigraphic analyses. Landslides, 1, 113–122.CrossRefGoogle Scholar
  17. Hermanns, R. L., Blikra, L. H., Naumann, M., Nilsen, B., Panthi, K. K., Stromeyer, D., and Longva, O., 2006. Examples of multiple rock-slope collapses from Köfels (Ötz valley, Austria) and western Norway. Engineering Geology, 83, 94–108.CrossRefGoogle Scholar
  18. Hermanns, R. L., Hansen, L., Sletten, K., Böhme, M., Bunkholt, H., Dehls, J. F., Eilertsen, R., Fischer., L., L’Heureux, J. -S., Høgaas, F., Nordahl, B., Oppikofer, T., Rubensdotter, L., Solberg, I. -L., Stalsberg K., and Yugsi Molina, F. X., 2012. Systematic geological mapping for landslide understanding in the Norwegian context. In Eberhardt, E., Froese, C., Turner, A.K., and Leroueil, S. (eds.), Landslides and Engineered Slopes, Protecting Society through improved understanding. London:Taylor and francis Group, pp. 265–271.Google Scholar
  19. Imamura, F., and Hashi, K., 2003. Re-examination of the source mechanism of the 1998 Papua New Guinea earthquake and tsunami. Pure and Applied Geophysics, 160, 2071–2086.CrossRefGoogle Scholar
  20. Jiang, L. C., and LeBlond, P. H., 1992. The coupling of a submarine slide and the surface waves which it generates. Journal of Geophysical Research, 97, 12731.CrossRefGoogle Scholar
  21. Krastel, S., Schmincke, H.-U., Jacobs, C. L., Rihm, R., Le Bas, T. P., and Alibes, B., 2001. Submarine landslides around the Canary Islands. Journal of Geophysical Research, 106, 3977–3997.CrossRefGoogle Scholar
  22. L’Heureux, J. S., Glimstad, S., Longva, O., Hansen, L., and Harbitz, C. B., 2011. The 1888 shoreline landslide and tsunami in Trondheimsfjorden, central Norway. Marine Geophysical Researches, 32, 313–329.CrossRefGoogle Scholar
  23. L’Heureux, J. S., Eilertsen, R. S., Glimstad, S., Issler, D., Solberg, I.-L., and Harbitz, C. B., 2012. The 1978 quick clay landslide at Rissa, mid-Norway: subaqueous morphology and tsunami simulations. In Yamada, Y., et al. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht: Springer Science + Business Media B.V. Advances in Natural and Technological Hazards Research, Vol. 31, doi:10.1007/978-94-007-2162-3_45.Google Scholar
  24. Labazuy, P., 1996. Recurrent landslides events on the submarine flank of Piton de la Fournaise Volcano (Reunion Island). Geological Society Special Publications, 110, 295–306.CrossRefGoogle Scholar
  25. Lacasse, S., and Nadim, F., 2009. Landslide risk assessment and mitigation strategy. In Sassa, K., and Canuti, P. (eds.), Landslides – Disaster Risk Reduction. Berlin: Springer, pp. 31–61.CrossRefGoogle Scholar
  26. Lee, H. J., Kayen, R. E., Gardner, J. V., and Locat, J., 2003. Characteristics of several tsunamigenics submarine landslides. In Locat, J., and Mienert, J. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht: Kluwer Academic. Advances in Natural and Technological Hazards Research, pp. 357–366.CrossRefGoogle Scholar
  27. Løvholt, F., Pedersen, G., and Gisler, G., 2008. Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113, C09026.CrossRefGoogle Scholar
  28. McCoy, F. W., and Heiken, G., 2000. Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece. Pure and Applied Geophysics, 157, 1227–1256.CrossRefGoogle Scholar
  29. McMurtry, G. M., Watts, P., Fryer, G. J., Smith, J. R., and Imamura, F., 2003. Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Marine Geology, 203, 219–233.CrossRefGoogle Scholar
  30. Miller, D. J., 1960. Giant Waves in Lituya Bay, Alaska. Washington: GPO. U.S. Geological Survey Professional Paper, Vol. 354 C, pp. 51–86.Google Scholar
  31. Moore, J. G., 1964. Giant Submarine Landslides on the Hawaiian Ridge. Reston, Virginia: U.S. Geological Survey, pp. D95–D98.Google Scholar
  32. Moore, J. G., and Moore, G. W., 1984. Deposit from a giant wave on the island of Lanai, Hawaii. Science, 226, 1312–1315.CrossRefGoogle Scholar
  33. Moore, G. W., and Moore, J. G., 1988. Large-scale bedforms in boulder gravel produced by giant waves in Hawaii. Special Paper – Geological Society of America, 229, pp. 101–110.Google Scholar
  34. Moscardelli, L., Hornbach, M., and Wood, L., 2009. Tsunamigenic risks associated with mass transport complexes in offshore Trinidad and Venuzuela. In Mosher, D. C., Shipp, R. C., Moscardelli, L., Chaytor, J. D., Baxter, C. D. P., Lee, H. L., and Urgeles, R. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht: Springer. Advances in Natural and Technological Hazards Research, Vol. 28, pp. 733–744.Google Scholar
  35. Murty, T. S., 1979. Submarine slide-generated water waves in Kitimat Inlet, British Columbia. Journal of Geophysical Research, 84, 7777–7779.CrossRefGoogle Scholar
  36. Naranjo, J. A., Arenas, M., Clavero, J., and Muñoz, O., 2009. Mass movement-induced tsunamis: main effects during the Patagonian Fjordland seismic crisis in Aisén (45º25’S), Chile. Andean Geology, 36, 137–145.Google Scholar
  37. Nishimura, Y., Miyaji, N., and Suzuki, M., 1999. Behavior of historic tsunamis of volcanic origin as revealed by onshore tsunami deposits. Physics and Chemical of the Earth, Part A: Solid Earth and Geodesy, 24, 985–988.CrossRefGoogle Scholar
  38. Okal, E. A., and Synolakis, C. E., 2004. Source discriminants for near-field tsunamis. Geophysical Journal International, 158, 899–912.CrossRefGoogle Scholar
  39. Paras-Carayannis, G., 2004. Volcanic tsunami generating source mechanisms in the Eastern Caribbean region. Science of Tsunami Hazards, 22, 74–114.Google Scholar
  40. Pelinovsky, E., and Poplavsky, A., 1996. Simplified model of tsunami generation by submarine landslides. Physics and Chemistry of the Earth, 21, 13–17.CrossRefGoogle Scholar
  41. Percival, D. B., Denbo, D. W., Eble, M. C., Gica, E., Mofjeld, H. O., Spillane, M. C., Tang, L., and Titov, V. V., 2011. Extraction of tsunami source coefficients via inversion of DARTÛ buoy data. Nat. Hazards, 58(1), 567–590. doi: 10.1007/s11069-010-9688-1.CrossRefGoogle Scholar
  42. Piper, D. J. W., and Asku, A. E., 1987. The source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets. Geo-Marine Letters, 7, 177–182.CrossRefGoogle Scholar
  43. Reynolds, J. M., 1992. The identification and mitigation of glacier-related hazards; examples from the Cordillera Blanca, Peru. In McCall, G. J. H., Laming, D. D. C., and Scott, S. C. (eds.), Geohazards; Natural and Man-Made. London: Chapment and Hall, pp. 143–157.Google Scholar
  44. Sælevik, G., Jensen, A., and Pedersen, G., 2009. Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway. Coastal Engineering, 56, 897–906.CrossRefGoogle Scholar
  45. Satake, K., 2007. Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea. Earth Planets Space, 59, 381–390.CrossRefGoogle Scholar
  46. Siebert, L., Glicken, H., and Ui, T., 1987. Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bulletin of Volcanology, 49, 435–459.CrossRefGoogle Scholar
  47. Smith, D. E., Shi, S., Cullingford, R., Dawson, A., Firth, C., Foster, L., Fretwell, P., Haggart, B., Holloway, L., and Long, D., 2004. The Holocene Storegga slide tsunami in the United Kingdom. Quaternary Science Reviews, 23, 2291–2321.CrossRefGoogle Scholar
  48. Solheim, A., Berg, K., Forsberg, C. F., and Bryn, P., 2005. The Storegga slide complex: repetitive large scale sliding with similar cause and development. Marine and Petroleum Geology, 22, 97–107.CrossRefGoogle Scholar
  49. Stone, R., 2009. Peril in the pamirs. Science, 326(5960), 1614–1617.CrossRefGoogle Scholar
  50. Tanner, L. H., and Calvari, S., 2004. Unusual sedimentary deposits on the SE side of Stromboli Volcano, Italy; products of a tsunami caused by the ca. 5000 years BP Sciara del Fuoco collapse? Journal of Volcanology and Geothermal Research, 137, 329–340.CrossRefGoogle Scholar
  51. Tappin, D. R., 2009. Mass transport events and their tsunami hazard. In Mosher, D. C., Shipp, R. C., Moscardelli, L., Chaytor, J. D., Baxter, C. D. P., Lee, H. L., and Urgeles, R. (eds.), Submarine Mass Movements and Their Consequences. Dordrecht: Springer. Advances in Natural and Technological Hazards Research, Vol. 28, pp. 667–684.Google Scholar
  52. Tappin, D. R., Watts, P., McMurtry, G. M., Lafoy, Y., and Matsumoto, T., 2001. The Sissano Papua New Guinea tsunami of July 1998 – offshore evidence on the source mechanism. Marine Geology, 175, 1–23.CrossRefGoogle Scholar
  53. Tappin, D. R., Watts, P., and Grilli, S. T., 2008. The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards and Earth System Science, 8, 1–24.CrossRefGoogle Scholar
  54. Tinti, S., Bortolucci, E., and Armigliato, A., 1999. Numerical simulation of the landslide-induced tsunami of 1988 on Vulcano Island, Italy. Bulletin of Volcanology, 61, 121–137.CrossRefGoogle Scholar
  55. Voight, B., Jandra, J. R., Glicken, H., and Douglass, P. M., 1983. Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique, 33, 243–273.CrossRefGoogle Scholar
  56. Wagner, B., Bennike, O., Klug, M., and Cremer, H., 2007. First indication of Storegga tsunami deposits from East Greenland. Journal of Quaternary Science, 22, 321–325.CrossRefGoogle Scholar
  57. Ward, S. N., 2001. Landslide tsunami. Journal of Geophysical Research B, Solid Earth and Planets, 106, 11,201–11,215.CrossRefGoogle Scholar
  58. Ward, S. N., and Day, S., 2001. Cumbre Vieja Volcano; potential collapse and tsunami at La Palma, Canary Islands. Geophysical Research Letters, 28, 3397–3400.CrossRefGoogle Scholar
  59. Watson, A. D., Derik Martin, C., Moore, D. P., Stewart, T. W. G., and Lorig, L. J., 2006. Integration of geology, monitoring and modeling to assess rockslide risk. Felsbau, 24, 50–58.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Reginald L. Hermanns
    • 1
  • Jean-Sébastien L’Heureux
    • 2
  • Lars H. Blikra
    • 3
  1. 1.Head of Landslides DepartmentGeological Survey of Norway, International Centre for GeohazardsTrondheimNorway
  2. 2.Norwegian Geotechnical Institute (NGI)TrondheimNorway
  3. 3.Åknes/Tafjord Early-Warning CentreStrandaNorway