Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky


  • Shane J. CroninEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_333


Composite volcano; Stratocone


A volcanic construct, built up into the form of a tall mountain over thousands to hundreds of thousands of years by accumulation of successive layers (=strata) of lava, pyroclastic deposits (from explosive eruptions), and related mass-flow deposits (Davidson and DeSilva, 2000; Schmincke, 2004). In their simplest form, these are conical-shaped mountains with steep upper slopes curving gradually down into low-sloping outer flanks (Figure  1). Older examples may show complex morphologies with irregular edifices being scarred by several generations of partial collapses (Figure  2). Their wide bases pass outward into overlapping fans of volcano-sedimentary deposits that may join to form a radiating ring-plain around the edifice (Cotton, 1944). Stratovolcanoes may vary greatly in volume between 10 and 500 km 3, with surrounding ringplains containing up to 80% of the erupted volume of long-lived examples (Zernack et al., 2009).
This is a preview of subscription content, log in to check access.


  1. Abdurachman, E. K., Bourdier, J. L., and Voight, B., 2000. Nuées ardentes at Merapi Volcano, Indonesia: distribution, deposits and damage. Journal of Volcanology and Geothermal Research, 100, 345–361.CrossRefGoogle Scholar
  2. Andronico, D., and Cioni, R., 2002. Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions and some implications for the assessment of future hazards. Bulletin of Volcanology, 64, 372–391.CrossRefGoogle Scholar
  3. Annen, C., Blundy, J. D., and Sparks, R. J. S., 2006. The genesis of intermediate and silicic magma in deep crustal hot zones. Journal of Petrology, 47, 505–539.CrossRefGoogle Scholar
  4. Blundy, J., Cashman, K., and Humpreys, M., 2006. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature, 443, 76–80.CrossRefGoogle Scholar
  5. Bonadonna, C., 2006. Probabilistic modelling of tephra dispersal. In Mader, H., Cole, S., and Connor, C. B. (eds.), Statistics in Volcanology. London: Geological Society. IAVCEI Series, Vol. 1, pp. 243–259.Google Scholar
  6. Bonforte, A., Gambino, S., Guglielmino, F., Obrizzo, F., and Palano, M., 2007. Ground deformation modelling of flank dynamics prior to the 2002 eruption of Mt. Etna. Bulletin of Volcanology, 69, 757–768.CrossRefGoogle Scholar
  7. Branney, M. J., and Kokelaar, B. P., 2002. Pyroclastic Density Currents and the Sedimentation of Ignimbrites. London: Geological Society, Memoir 27, 143 pp.Google Scholar
  8. Carey, S., and Sparks, R. S. J., 1986. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bulletin of Volcanology, 48, 109–125.CrossRefGoogle Scholar
  9. Carmichael, I. S. E., 2002. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west–central (105–99°W) Mexico. Contributions to Mineralogy and Petrology, 143, 641–663.CrossRefGoogle Scholar
  10. Carn, S. A., and Oppenheimer, C., 2000. Remote monitoring of Indonesian volcanoes using satellite data from the Internet. International Journal of Remote Sensing, 21, 873–910.CrossRefGoogle Scholar
  11. Cotton, C. A., 1944. Volcanoes as Landscape Forms. Christchurch, New Zealand: Whitcombe and Tombs, 415 pp.Google Scholar
  12. Crandell, D. R., and Mullineaux, D. R., 1978. Potential Hazards from Future Eruptions of Mt. St. Helens Volcano, Washington. Washington, DC: U.S. Government Printing Office. U.S. Geological Survey Bulletin 1383-C, 26 pp.Google Scholar
  13. Cronin, S. J., Neall, V. E., Lecointre, J. A., and Palmer, A. S., 1996. Unusual “snow slurry” lahars from Ruapehu volcano, New Zealand, September 1995. Geology, 24, 1107–1110.CrossRefGoogle Scholar
  14. Cronin, S. J., Neall, V. E., Lecointre, J. A., Hedley, M. J., and Loganathan, P., 2003. Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research, 121, 271–291.CrossRefGoogle Scholar
  15. Curilem, G., Vergara, J., Fuentealba, G., Acuna, G., and Chacon, M., 2009. Classification of seismic signals at Villarrica volcano (Chile) using neural networks and genetic algorithms. Journal of Volcanology and Geothermal Research, 180, 1–8.CrossRefGoogle Scholar
  16. Davidson, J., and DeSilva, S., 2000. Composite volcanoes. In Sigurdsson, H., Houghton, B. F., McNutt, S. R., Rymer, H., and Stix, J. (eds.), Encyclopedia of Volcanoes. San Diego, CA: Academic, pp. 663–681.Google Scholar
  17. Devine, J. D., Rutherford, M. J., Norton, G. E., and Young, S. R., 2003. Magma storage region processes inferred from geochemistry of Fe–Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. Journal of Petrology, 44, 1375–1400.CrossRefGoogle Scholar
  18. Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. Heidelberg, Germany: Springer, 390 pp.CrossRefGoogle Scholar
  19. Grove, T. L., Parman, S. W., Bowring, S. A., Price, R. C., and Baker, M. B., 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from Mt. Shasta region, N California. Contributions to Mineralogy and Petrology, 142, 375–396.CrossRefGoogle Scholar
  20. Hansell, A., Horwell, C. J., and Oppenheimer, C., 2006. The health hazards of volcanoes and geothermal areas. Occupational and Environmental Medicine, 63, 149–156.CrossRefGoogle Scholar
  21. Lacroix, A., 1904. La Montagne Pelée et ses Eruptions. Paris: Masson, 622 pp.Google Scholar
  22. Lipman, P. W., and Mullineaux, D. R. (eds.), 1981. The 1980 Eruptions of Mt. St. Helens, Washington. Washington, DC: U.S. Government Printing Office. US Geological Survey Professional Paper 1250, 843 pp.Google Scholar
  23. Lowe, D. R., Williams, S. N., Leigh, H., Connor, C. B., Gemmell, J. B., and Stoiber, R. E., 1986. Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia. Nature, 324, 51–53.CrossRefGoogle Scholar
  24. Manville, V., and Cronin, S. J., 2007. Breakout lahar from New Zealand’s Crater Lake. Eos Transactions, American Geophysical Union, 88(43), 441–442.CrossRefGoogle Scholar
  25. McGuire, W. J., 2003. Volcanic instability and lateral collapse. Revista, 1, 33–45.Google Scholar
  26. McKenzie, D., 1985. The extraction of magma from the crust and mantle. Earth and Planetary Science Letters, 74, 81–91.CrossRefGoogle Scholar
  27. Neall, V. E., 1996. Hydrological disasters associated with volcanoes. In Singh, V. P. (ed.), Hydrology of Disasters. Dordrecht, The Netherlands: Kluwer, pp. 395–425, 442p.CrossRefGoogle Scholar
  28. Newhall, C. G., and Punongbayan, R. (eds.), 1996. Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology, Quezon City. Seattle, WA: University of Washington Press, 1126 pp.Google Scholar
  29. Price, R. C., Stewart, R. B., Woodhead, J. D., and Smith, I. E. M., 1999. Petrogenesis of high-K arc magmas: evidence from Egmont Volcano, North Island, New Zealand. Journal of Petrology, 40, 167–197.CrossRefGoogle Scholar
  30. Procter, J. N., Cronin, S. J., Platz, T., Patra, A., Dalbey, K., Sheridan, M., and Neall, V., 2010. Mapping block-and-ash flow hazards based on Titan2D simulations; a case study from Mt. Taranaki, NZ. Natural Hazards, 53, 483–501.Google Scholar
  31. Pyle, D. M., 1989. The thickness, volume and grainsize of tephra fall deposits. Bulletin of Volcanology, 51, 1–15.CrossRefGoogle Scholar
  32. Scarpa, R., and Tilling, R. I. (eds.), 1996. Monitoring and Mitigation of Volcano Hazards. Berlin/Heidelberg: Springer, pp. 541–572.CrossRefGoogle Scholar
  33. Schmincke, H. -U., 2004. Volcanism. Berlin: Springer, 324 pp.CrossRefGoogle Scholar
  34. Scott, B. J., and Travers, J., 2009. Volcano monitoring in NZ and links to SW Pacific via the Wellington VAAC. Natural Hazards, 51, 263–273.CrossRefGoogle Scholar
  35. Siebert, L., 1996. Hazards of large volcanic debris avalanches and associated eruptive phenomena. In Scarpa, R., and Tilling, R. I. (eds.), Monitoring and Mitigation of Volcano Hazards. Berlin/Heidelberg: Springer, pp. 541–572.CrossRefGoogle Scholar
  36. Siebert, L., Glicken, H., and Ui, T., 1987. Volcanic hazards from Bezymmianny- and Bandai-type eruptions. Bulletin of Volcanology, 49, 435–459.CrossRefGoogle Scholar
  37. Sigurdsson, H., Cashdollar, S., and Sparks, R. S. J., 1982. The eruption of Vesuvius in AD79: reconstruction from historical and volcanological evidence. American Journal of Archeology, 86, 39–51.CrossRefGoogle Scholar
  38. Simkin, T., and Fiske, R. S., 1983. Krakatau 1883: The Volcanic Eruption and Its Effects. Washington, DC: Smithsonian Institute, 464 pp.Google Scholar
  39. Simkin, T., and Siebert, L., 1994. Volcanoes of the World. Tuscon, AZ: Geoscience Press, 368 pp.Google Scholar
  40. Tanguy, J. -C., Ribière, Ch, Scarth, A., and Tjetjep, W. S., 1998. Victims from volcanic eruptions, a revised database. Bulletin of Volcanology, 60, 137–144.CrossRefGoogle Scholar
  41. Turner, M. B., Cronin, S. J., Bebbington, M. S., and Platz, T., 2008. Developing a probabilistic eruption forecast for dormant volcanoes; a case study from Mt Taranaki, New Zealand. Bulletin of Volcanology, 70, 507–515.CrossRefGoogle Scholar
  42. Vallance, J. W., 2000. Lahars. In Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J. (eds.), Encyclopedia of Volcanoes. San Diego, CA: Academic, pp. 601–616.Google Scholar
  43. Voight, B., 1990. The 1985 Nevado del Ruiz Volcano catastrophe: anatomy and retrospection. Journal of Volcanology and Geothermal Research, 44, 349–386.CrossRefGoogle Scholar
  44. Voight, B., and Elsworth, D., 2000. Instability and collapse of hazardous gas-pressurised lava domes. Geophysical Research Letters, 27, 1–4.CrossRefGoogle Scholar
  45. Voight, B., Constantine, E. K., Siswowidjoyo, S., and Torley, R., 2000. Historical eruptions of Merapi Volcano, Indonesia, 1768–1998. Journal of Volcanology and Geothermal Research, 100, 69–138.CrossRefGoogle Scholar
  46. Witham, C. S., 2005. Volcanic disasters and incidents: a new database. Journal of Volcanology and Geothermal Research, 148, 191–233.CrossRefGoogle Scholar
  47. Zernack, A., Procter, J., and Cronin, S. J., 2009. Sedimentary signatures of cyclic growth and destruction of stratovolcanoes: a case study from Mt. Taranaki, New Zealand. Sedimentary Geology, 220, 288–305.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Natural ResourcesMassey UniversityPalmerston NorthNew Zealand