Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky

Landslide Dam

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_213

Synonyms

Debris dam; Quake lake

Definition

Landslide dams are formed by landslide (see entry  Landslide) deposits or moving landslides which block a permanent or ephemeral water course leading to the formation of a natural reservoir which fills with water and/or sediments. The term quake lake is used in the case that the landslide was triggered seismically, this term became established as a name for a landslide-dammed lake in southwestern Montana triggered by an earthquake on August 17, 1959; it then became more widely used after the 2008 Wenchuan China earthquake that triggered hundreds of large valley-damming landslides.

Introduction

Landslide dams range in size from a few cubic meters in volume and a few decimeters high (e.g., that can block a drainage ditch beside a road), to a dam several cubic kilometers in volume and several hundreds of meters high that can block an entire mountain valley. In all cases, the damming adds to the hazard (see entry  Hazard) of the landslide due to...

This is a preview of subscription content, log in to check access

Bibliography

  1. Abbott, J., 1848. Inundation of the Indus, taken from the lips of an eye-witness A. D., 1842. Journal of the Asiatic Society of Bengal, 17, 230–232.Google Scholar
  2. Aduschkin, V. V., 2011. Russian experience with blast-fill dam construction. In Evans, S. G., Hermanns, R. L., Strom, A. L., and Scarascia Mugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 595–616.CrossRefGoogle Scholar
  3. Alford, A., and Schuster, R. L., 2000. Usoi Landslide Dam and Lake Sarez. New York: United Nations Publication. ISDR Prevention Series.Google Scholar
  4. Bianchi Fasani, G., Esposito, C., Petitta, M., ScaraciaMugnozza, G., Barbierei, M., Cardarelli, E., Cercato, M., and Di Fillipo, G., 2011. The importance of the geological models in understanding and predicting the life span of rockslide dams. In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 323–346.CrossRefGoogle Scholar
  5. Casagli, N., Ermini, L., and Rosati, G., 2003. Determining grain size distribution of material composing landslide dams in the Northern Apennine: sampling and processing methods. Engineering Geology, 69, 83–97.CrossRefGoogle Scholar
  6. Costa, J. E., and Schuster, R. L., 1988. The formation and failure of natural dams. Geological Society of America Bulletin, 100, 1054–1068.CrossRefGoogle Scholar
  7. Dai, F. C., Lee, C. F., Deng, J. H., and Tham, L. G., 2005. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu river, Southwestern China. Geomorphology, 65, 205–221.CrossRefGoogle Scholar
  8. Davies, T. R. H., and Korup, O., 2007. Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs. Earth Surface Processes and Landforms, 32, 725–742.CrossRefGoogle Scholar
  9. Davies, T. R. H., Manville, V., Kunz, M., and Donadini, L., 2007. Modelling landslide dambreak flood magnitudes: case study. Journal of Hydraulic Engineering, 133, 713–720.CrossRefGoogle Scholar
  10. Delaney, K. B., and Evans, S. G., 2011. Rockslide dams in the northwest Himalayas (Pakistan, India) and the adjacent Pamir Mountains (Afghanistan, Tajikistan), Central Asia. In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 205–241.CrossRefGoogle Scholar
  11. Droz, P., and Spasic-Gril, L., 2006. Lake Sarez mitigation project: a global risk analysis. In Proceedings 22nd Congress on Large Dams, Barcelona, Q36-R75.Google Scholar
  12. Duman, T. Y., 2009. The largest landslide dam in Turkey: Tortum landslide. Engineering Geology, 104, 66–79.CrossRefGoogle Scholar
  13. Dunning, S., Petley, D., Rosser, N., and Strom, A., 2005. The morphology and sedimentology of valley confined rock-avalanche deposits and their effect on potential dam hazard. In Hungr, O., Couture, R., Eberhardt, E., and Fell, R. (eds.), Landslide Risk Management. Amsterdam: Balkema, pp. 691–701.Google Scholar
  14. Dunning, S. A., Rosser, N. J., Petley, D. N., and Massey, C. R., 2006. Formation and failure of the Tsatichhu landslide dam, Bhutan. Landslides, 3, 107–113.CrossRefGoogle Scholar
  15. Ermini, L., and Casagli, N., 2003. Prediction of the behaviour of landslide dams using a geomorphologic dimensionless index. Earth Surface Processes and Landforms, 28, 31–47.CrossRefGoogle Scholar
  16. Evans, S. G., 1986. The maximum discharge of outburst floods caused by the breaching of man-made and natural dams. Canadian Geotechnical Journal, 23, 385–387.CrossRefGoogle Scholar
  17. Evans, S. G., 2006. The formation and failure of landslide dams: an approach to risk assessment. Italian Journal of Engineering Geology and Environment, 1(Special issue), 15–20.Google Scholar
  18. Evans, S. G., Delaney, K. B., Hermanns, R. L., Strom, A. L., and Scarascia-Mugnozza, G., 2011a. The formation and behavior of natural and artificial rockslide dams: Implications for engineering performance and hazard management. In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 1–75.CrossRefGoogle Scholar
  19. Evans, S. G., Hermanns, R. L., Strom, A. L., and Scarascia-Mugnozza, G., 2011b. Natural and Artificial Rock Slide Dams. Berlin: Springer. Lecture Notes in Earth Sciences.CrossRefGoogle Scholar
  20. Fread, D. L., 1993. NWS FLDWAV Model: the replacement of DAMBRK for dam-break flood prediction. In Proceedings: The10th AnnualConference ofthe Associationof StateDam SafetyOfficials. Kansas City, MO, pp. 177–184.Google Scholar
  21. González Díaz, E. F., Giaccardi, A., and Costa, C., 2001. La avalancha de rocas del río Barrancas (Cerro Pelán), norte del Neuquén: su relación con la catástrofe del río Colorado (29/12/1914). Revista de la Asociación Geológica Argentina, 56, 466–480.Google Scholar
  22. Groeber, P., 1916. Informe sobre las causas que han producido las crecientes del río Colorado (Provincia de Neuquén, Argentina). Dirección General de Minas, Geología e hidrogeología, 11, 1–29.Google Scholar
  23. Hancox, G. T., McSaveney, M. J., Manville, V. R., and Davies, T. R., 2005. The October 1999 Mt, Adams rock avalanche and subsequent landslide dam-break flood and effects in Poera River, Westland, New Zealand. New Zealand Journal of Geology and Geophysics, 48, 683–705.CrossRefGoogle Scholar
  24. Hermanns, R. L., Blikra, L. H., and Longva, O., 2009. Relation between rockslide dam and valley morphology and its impact on rockslide dam longevity and control on potential breach development based on examples from Norway and the Andes. In Bauer, E., Semprich, S., and Zenz, G. (eds.), Long Term Behavior of Dams: Proceedings of the 2nd International Conference. Graz: Verlag der Technischen Universität Graz, pp. 789–794.Google Scholar
  25. Hermanns, R. L., Folguera, A., Penna, I., Fauqué, L., and Niedermann, S., 2011b. Landslide dams in the central Andes of Argentina (Northern Patagonia and the Argentine Northwest). In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 147–176.CrossRefGoogle Scholar
  26. Hermanns, R. L., Hewitt, K., Strom, A. L., Evans, E. G., Dunning, S. A., and ScarasciaMugnozza, G., 2011a. The classification of rock slide dams. In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 581–593.CrossRefGoogle Scholar
  27. Hermanns, R. L., Niedermann, S., Ivy-Ochs, S., and Kubik, P. W., 2004. Rock avalanching into a landslide-dammed lake causing multiple dam failures in Las Conchas valley (NW Argentina) – evidence from surface exposure dating and stratigraphic analyses. Landslides, 1, 113–122.CrossRefGoogle Scholar
  28. Hewitt, K., 2006. Disturbance regime landscapes: mountain drainage systems interrupted by large rockslides. Progress in Physical Geography, 30, 365–393.CrossRefGoogle Scholar
  29. Hewitt, K., Gosse, J., and Clague, J. J., 2011. Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya. Geological Society of America Bulletin, 123, 1836–1850.CrossRefGoogle Scholar
  30. Ischuk, A. R., 2011. Usoi rockslide dam and lake Sarez, Pamir mountains, Tajikistan. In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 423–440.CrossRefGoogle Scholar
  31. Iverson, R. L., Scilling, S. P., and Vallance, J. W., 1998. Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110, 972–984.CrossRefGoogle Scholar
  32. Konagai, K., and Sattar, A., 2011. Partial breaching of Hattian Bala landslide dam formed in the 8th October 2005 Kashmir Earthquake, Pakistan. Landslides, doi:10.1007/s10346-011-0280-x.Google Scholar
  33. Korchevskiy, V. F., Kolichko, A. V., Strom, A. L., Pernik, L. M., and Abdrakhmatov, K., 2011. Utilisation of data derived from large-scale experiments and study of natural blockages for blast fill dam design. In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 617–637.CrossRefGoogle Scholar
  34. Korup, O., 2004. Geomorphometric characteristics of New Zealand landslide dams. Engineering Geology, 73, 13–35.CrossRefGoogle Scholar
  35. Meyer, W., Sabol, M. A., Glicken, H. X., and Voight, B., 1985. The Effects of Groundwater, Slope Stability, and Seismic Hazard on the Stability of the South Fork Castle Creek Blockage in the Mt. St. Helens area, Washington. USGS Professional Paper, 1345, pp. 1–42.Google Scholar
  36. Meyer, W., Schuster, R. L., and Sabol, M. A., 1994. Potential for seepage erosion of landslide dam. Journal of Geotechnical Engineering, 120, 1211–1229.CrossRefGoogle Scholar
  37. O’Brien, J. S., 2003. Reasonable assumptions in routing a dam break mudflow. In Proceedings of the 3rd International Conference on Debris Flow hazard Mitigation: Mechanics, Prediction, and Assessment. Davos, 1, pp. 683–693.Google Scholar
  38. Quenta, G., Galaza, I., Teran, N., Hermanns, R. L., Cazas, A., García, H., 2007. Deslizamiento traslacional y represamiento en el valle de Allpacoma, ciudad de La Paz, Bolivia. In: Proyecto Multinacional Andino: Geosciencias para las Communidades Andinas. Servicio Nacional de Geología y Minería, Publicación Multinacional, 4, pp. 230–234.Google Scholar
  39. Schuster, R. L., 2006. Impacts of landslide dams on mountain valley morphology. In Evans, S. G., ScarasciaMugnozza, G., Strom, A. L., and Hermanns, R. L. (eds.), Landslides from Massive Rock Slope Failures Earth and Environmental Sciences. Dodrecht: Springer. NATO Science Series IV, Vol. 49, pp. 591–618.CrossRefGoogle Scholar
  40. Schuster, R. L., and Evans, S. G., 2011. Risk reduction measure for landslide dams. In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 77–100.CrossRefGoogle Scholar
  41. Stone, R., 2009. Peril in the Pamirs. Science, 326(5960), 1614–1617.CrossRefGoogle Scholar
  42. Strom, A. L., and Pernik, L., 2006. Utilization of the data on rockslide dams formation and structure for blast-fill dams design. Italian Journal of Engineering Geology and Environment, 1(Special Issue), 133–136.Google Scholar
  43. Walder, J. S., and O’Connor, J. E., 1997. Methods for predicting peak discharge of floods caused by the failure of natural and constructed earthen dams. Water Resources Research, 33, 2337–2348.CrossRefGoogle Scholar
  44. Weidinger, J. T., 2011. Stability and life span of landslide dams in the Himalayas (India, Nepal) and the Qin Ling mountains (China). In Evans, S. G., Hermanns, R. L., Strom, A. L., and ScarasciaMugnozza, G. (eds.), Natural and Artificial Rockslide Dams. Berlin: Springer. Lecture Series in Earth Sciences, pp. 243–278.CrossRefGoogle Scholar
  45. Zevallos, O., Fernandez, M. A., Plaza Nieto, G., Klinkicht Sojos, S., 1996. Sin plazo para la esperanza, reporte sobre el desastre de La Josephina – Quito: Escuela Politécnica Nacional.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Head of Landslides DepartmentInternational Centre for Geohazards, Geological Survey of NorwayTrondheimNorway