Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky

Landslide

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_212

Definition

A landslide is the failure and movement of a mass of rock, sediment, soil, or artificial fill under the influence of gravity. (Soil, as used here, is the thin layer that directly underlies the land surface formed by pedogenic processes.)

Introduction

Globally, landslides kill thousands of people each year and cause tens of billions of dollars in damage (Centre for Research on the Epidemiology of Natural Disasters, 2012). One of the most deadly landslides on record occurred during an earthquake in Peru on May 31, 1970. A streaming mass of blocky debris produced by a failure on Nevados Huascaran killed 8,000 inhabitants of the town of Yungay (Figure  1; Plafker and Ericksen, 1978; Evans et al., 2009). Landslides were also responsible for thousands of the more than 70,000 fatalities of the Sichuan (Wenchuan) earthquake in southwest China in 2008. Large landslides can also block rivers, creating impoundments and upstream flooding. When overtopped after the reservoirs reach...
This is a preview of subscription content, log in to check access.

Bibliography

  1. Bakun, W. H., Haugerud, R. A., Hopper, M. G., and Ludwin, R. S., 2002. The December 1872 Washington State earthquake. Bulletin of the Seismological Society of America, 92, 3239–3258.CrossRefGoogle Scholar
  2. Centre for Research on the Epidemiology of Disasters, 2012. EM-DAT, The International Disaster Database. Universite catholique de Louvain, Brussels, Belgium. http:www.emdat.be. Accessed 7 April 2012.
  3. Crandell, D. R., 1971. Postglacial Lahars from Mount Rainier Volcano, Washington. Washington, DC: U.S. Government Printing Office. U.S. Geological Survey Professional Paper, Vol. 677.Google Scholar
  4. Cruden, D. M., and Krahn, J., 1978. Frank rockslide, Alberta, Canada. In Voight, B. (ed.), Rockslides and Avalanches. Amsterdam: Elsevier. Natural Phenomena, Vol. 1, pp. 97–112.CrossRefGoogle Scholar
  5. Cruden, D. M., and Varnes, D. J., 1996. Landslide types and processes. In Turner, A. K., and Schuster, R. L. (eds.), Landslides: Investigation and Mitigation. Washington, DC: National Academy Press. National Research Council, Transportation Research Safety Board Special Report, Vol. 247, pp. 36–75.Google Scholar
  6. Eden, W. J., and Mitchell, R. J., 1970. The mechanics of landslides in Leda clay. Canadian Geotechnical Journal, 7, 285–296.CrossRefGoogle Scholar
  7. Evans, S. G., and Savigny, K. W., 1994. Landslides in the Vancouver–Fraser Valley–Whistler region. In Monger, J. W. H. (ed.), Geology and Geological Hazards of the Vancouver Region, Southwestern British Columbia. Ottawa: Natural Resources Canada. Geological Survey of Canada Bulletin, Vol. 481, pp. 251–286.Google Scholar
  8. Evans, S. G., Couture, R., and Chagnon, J. Y., 1997. Notes on major Leda Clay landslides of the St. Lawrence Lowlands of eastern Canada, 1615–1996. In 50th Canadian Geotechnical Conference of the Canadian Geotechnical Society. Alliston, ON: Canadian Geotechnical Society. Geological Survey of Canada Contribution Series, pp. 839–846.Google Scholar
  9. Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama, M. P., Delaney, K. B., and Oliver-Smith, A., 2009. A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascaran. Engineering Geology, 108, 96–118.CrossRefGoogle Scholar
  10. Fischer, L., Kääb, A., Huggel, C., and Noetzli, J., 2006. Geology, glacier retreat and permafrost degradation as controlling factor of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Natural Hazards and Earth System Sciences, 6, 761–772.CrossRefGoogle Scholar
  11. Hewitt, K., Clague, J. J., and Orwin, J. F., 2008. Legacies of catastrophic rock slope failures in mountain landscapes. Earth Science Reviews, 87, 1–38.CrossRefGoogle Scholar
  12. Holm, K., and Jakob, M., 2009. Long rockfall runout, Pascua Lama, Chile. Canadian Geotechnical Journal, 46, 225–230.CrossRefGoogle Scholar
  13. Huggel, C., 2009. Recent extreme slope failures in glacial environments; effects of thermal perturbation. Quaternary Science Reviews, 28, 1119–11130.Google Scholar
  14. Jakob, M., and Hungr, O. (eds.), 2005. Debris-Flow Hazards and Related Phenomena. Berlin: Springer.Google Scholar
  15. Mathews, W. H., and McTaggart, K. C., 1978. Hope rockslides, British Columbia, Canada. In Voigt, B. (ed.), Rockslides and Avalanches. Amsterdam: Elsevier. Natural Phenomena, Vol. 1, pp. 259–275.CrossRefGoogle Scholar
  16. McRoberts, E. C., and Morgenstern, N. R., 1974. Stability of slopes in frozen soil. Canadian Geotechnical Journal, 11, 554–573.CrossRefGoogle Scholar
  17. Noetzli, J., and Gruber, S., 2009. Transient thermal effects in Alpine permafrost. The Cryosphere, 3, 85–99.CrossRefGoogle Scholar
  18. Oppikofer, T., Jaboyedoff, M., and Keusen, H. R., 2008. Collapse of the eastern Eiger flank in the Swiss Alps. Nature Geosciences, 1, 531–535.CrossRefGoogle Scholar
  19. Peckover, F. L., and Kerr, J. W. G., 1977. Treatment and maintenance of rock slopes on transportation routes. Canadian Geotechnical Journal, 14, 487–507.CrossRefGoogle Scholar
  20. Plafker, G., and Ericksen, G. E., 1978. Nevados Huascaran avalanches, Peru. In Voight, B. (ed.), Rockslides and Avalanches. Amsterdam: Elsevier. Natural Phenomena, Vol. 1, pp. 277–314.CrossRefGoogle Scholar
  21. Prior, D. B., and Bornhold, B. D., 1988. Submarine morphology and processes of fjord fan deltas and related high-gradient systems: modern examples from British Columbia. In Nemec, W., and Steel, R. J. (eds.), Fan Deltas: Sedimentology and Tectonic Settings. London: Blackie and Son, pp. 125–143.Google Scholar
  22. Rankka, K., Andersson-Sköld, Hultén, C., Larsson, R., Leroux, V., and Dahlin, T., 2004. Quick clay in Sweden. Swedish Geotechnical Institute Report, 65.Google Scholar
  23. Schuster, R. L., and Kockelman, W. J., 1996. Principles of landslide hazard reduction. In Turner, A. K., and Schuster, R. L. (eds.), Landslides: Investigation and Mitigation. Washington, DC: National Academy Press. National Research Council, Transportation Research Safety Board Special Report, Vol. 247, pp. 91–105.Google Scholar
  24. Scott, K. M., and Vallance, J. W., 1995. Debris Flow, Debris Avalanche, and Flood Hazards at and Downstream from Mount Rainier, Washington. Reston, VA: U.S. Geological Survey. U.S. Geological Survey Hydrologic Investigations Atlas, Vol. HA-729.Google Scholar
  25. Smalley, I., 1980. Factors relating to the landslide process in Canadian quickclays. Earth Surface Processes and Landforms, 1, 163–172.CrossRefGoogle Scholar
  26. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (eds.), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  27. Voight, B. (ed.), 1978. Rockslides and Avalanches (2 Vols.). Amsterdam: Elsevier.Google Scholar
  28. Wieczorek, G. F., 1996. Landslide triggering mechanisms. In Turner, A. K., and Schuster, R. L. (eds.), Landslides: Investigation and Mitigation. Washington, DC: National Academy Press. National Research Council, Transportation Research Safety Board Special Report, Vol. 247, pp. 76–90.Google Scholar
  29. Wyllie, D., 1991. Rock slope stabilization and protection measures. In Proceedings of a National Symposium on Highway and Railroad Slope Maintenance, Chicago, IL, pp. 41–63.Google Scholar
  30. Zischinsky, U., 1969. Über sackungen [Subsidence]. Rock Mechanics, 1, 30–52.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre for Natural Hazard ResearchSimon Fraser UniversityBurnabyCanada