Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky

Hurricane (Typhoon, Cyclone)

  • Robert Korty
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_175

Definition

Tropical cyclone. An organized, cyclonically rotating system of convection driven by fluxes of heat derived from the ocean. Tropical cyclones are classified by their intensities using nomenclature that varies regionally. Tropical storms are tropical cyclones that have maximum sustained winds between 17 and 32 m/s (34–63 kts); intense tropical cyclones – those with winds of at least 33 m/s (64 kts) – are called hurricanes in the Atlantic and eastern North Pacific basins and typhoons in the western North Pacific. Typhoons whose maximum sustained 1-minute surface winds exceed 65 m/s (130 kts) are called super typhoons, and the strongest hurricanes (Category 3 or higher on the Saffir-Simpson Hurricane Wind Scale; see Tables  1 and 2) are classified as major hurricanes in the Western Hemisphere. In the Indian Ocean and South Pacific, tropical cyclones are referred to as cyclones.
Hurricane (Typhoon, Cyclone), Table 1

Original Saffir-Simpson scale of hurricane intensity (Simpson...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Bengtsson, L., Hodges, K. I., Esch, M., Keenlyside, N., Kornbleuh, L., Luo, J.-J., and Yamagata, T., 2007. How may tropical cyclones change in a warmer climate? Tellus, 59, 539–561.CrossRefGoogle Scholar
  2. Bister, M., and Emanuel, K., 1997. The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study. Monthly Weather Review, 125, 2662–2682.CrossRefGoogle Scholar
  3. Bister, M., and Emanuel, K., 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 65, 233–240.CrossRefGoogle Scholar
  4. Bui, H. H., Smith, R. K., Montgomery, M. T., and Peng, J., 2009. Balanced and unbalanced aspects of tropical cyclone intensification. Quarterly Journal of the Royal Meteorological Society, 135, 1715–1731.CrossRefGoogle Scholar
  5. Camargo, S. J., Emanuel, K. A., and Sobel, A. H., 2007. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate, 20, 4819–4834.CrossRefGoogle Scholar
  6. Dean, L., Emanuel, K. A., and Chavas, D. R., 2009. On the size distribution of Atlantic tropical cyclones. Geophysical Research Letters, 36, L14803, doi:10.1029/2009GL039051.CrossRefGoogle Scholar
  7. DeMaria, M., 1996. The effect of vertical shear on tropical cyclone intensity change. Journal of the Atmospheric Sciences, 53, 2076–2087.CrossRefGoogle Scholar
  8. DeMaria, M., and Kaplan, J., 1994. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. Journal of Climate, 7, 1324–1334.CrossRefGoogle Scholar
  9. Emanuel, K. A., 1986. An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. Journal of the Atmospheric Sciences, 43, 585–604.CrossRefGoogle Scholar
  10. Emanuel, K. A., 1988. The maximum intensity of hurricanes. Journal of the Atmospheric Sciences, 45, 1143–1155.CrossRefGoogle Scholar
  11. Emanuel, K. A., 2000. A statistical analysis of tropical cyclone intensity. Monthly Weather Review, 128, 1139–1152.CrossRefGoogle Scholar
  12. Emanuel, K. A., 2003. Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75–104.CrossRefGoogle Scholar
  13. Emanuel, K., 2010. Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908-1958. Journal of Advances in Modeling Earth Systems, 2, doi:10.3894/JAMES.2010.2.1.Google Scholar
  14. Frank, W., and Ritchie, E., 2001. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly Weather Review, 129, 2249–2269.CrossRefGoogle Scholar
  15. Gray, W. M., 1968. A global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96, 669–700.CrossRefGoogle Scholar
  16. Gray, W. M., 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. In Shaw, D. B. (ed.), Meteorology Over Tropical Oceans. Bracknell, Berkshire: James Glaisher House, Royal Meteorological Society, pp. 155–218.Google Scholar
  17. Hill, K. A., and Lackmann, G. M., 2009. Influence of environmental humidity on tropical cyclone size. Monthly Weather Review, 137, 3294–3315.CrossRefGoogle Scholar
  18. Holland, G., 1997. The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences, 54, 2519–2541.CrossRefGoogle Scholar
  19. Houze, R. A., Jr., 2010. Clouds in tropical cyclones. Monthly Weather Review, 138, 293–344.CrossRefGoogle Scholar
  20. Kleinschmidt, E., Jr., 1951. Gundlagen einer theorie des tropischen zyklonen. Archives for Meteorology Geophysics Bioklimatology Series A, 4, 53–72.CrossRefGoogle Scholar
  21. Kossin, J. P., Schubert, W. H., and Montgomery, M. T., 2000. Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. Journal of Atmospheric Sciences, 57, 3893–3917.CrossRefGoogle Scholar
  22. Landsea, C. W., co-authors, 2004. The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. In Murnane, J., and Liu, K.-B. (eds.), Hurricanes and Typhoons: Past, Present, and Future. New York: Columbia University Press, pp. 177–221.Google Scholar
  23. Liu, K.-B., and Fearn, M. L., 1993. Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21, 793–796.CrossRefGoogle Scholar
  24. Mallen, K. J., Montgomery, M. T., and Wang, B., 2005. Reexamining the near-core radial structure of the tropical cyclone primary circulation: implications for vortex resiliency. Journal of Atmospheric Sciences, 62, 408–425.CrossRefGoogle Scholar
  25. McBride, J. L., and Zehr, R., 1981. Observational analysis of tropical cyclone formation. Part II: comparison of non-developing versus developing systems. Journal of Atmospheric Sciences, 38, 1132–1151.CrossRefGoogle Scholar
  26. Price, J. F., 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11, 153–175.CrossRefGoogle Scholar
  27. Price, J. F., 1983. Internal wave wake of a moving storm. Part I: scales, energy budget, and observations. Journal of Physical Oceanography, 13, 949–965.CrossRefGoogle Scholar
  28. Riehl, H., 1950. A model for hurricane formation. Journal of Applied Physics, 21, 917–925.CrossRefGoogle Scholar
  29. Rotunno, R., and Emanuel, K. A., 1987. An air-sea interaction theory for tropical cyclones. Part II: evolutionary study using axisymmetric nonhydrostatic numerical model. Journal of Atmospheric Sciences, 44, 542–561.CrossRefGoogle Scholar
  30. Rotunno, R., Chen, Y., Wang, W., Davis, C., Dudhia, J., and Holland, C. L., 2009. Large-eddy simulation of an idealized tropical cyclone. Bulletin of the American Meteorological Society, 90, 1783–1788.CrossRefGoogle Scholar
  31. Schade, L. R., and Emanuel, K. A., 1999. The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model. Journal of Atmospheric Sciences, 56, 642–651.CrossRefGoogle Scholar
  32. Simpson, R. H., and Riehl, R., 1958. Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. In Technology Conference on Hurricanes. American Meteorological Society, Miami Beach, FL, pp. D4-1–D4-10.Google Scholar
  33. Simpson, R. H., and Riehl, H., 1981. The hurricane and its impact. Baton Rouge: Louisiana State University Press. 398 pp.Google Scholar
  34. Smith, R. B., 1993. A hurricane beta-drift law. Journal of Atmospheric Sciences, 50, 3213–3215.CrossRefGoogle Scholar
  35. Tang, B., and Emanuel, K., 2010. Mid-level ventilation’s constraint on tropical cyclone intensity. Journal of Atmospheric Sciences, 67, 1817–1830.CrossRefGoogle Scholar
  36. Wu, L., and Braun, S., 2004. Effects of environmentally induced asymmetries on hurricane intensity: a numerical study. Journal of Atmospheric Sciences, 61, 3065–3081.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesTexas A&M UniversityCollege StationUSA