Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky

Historical Events

  • Suzanne A. G. Leroy
  • Raisa Gracheva
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_169


Historical natural hazards


Natural hazards that occurred in the historical past.


This entry deals with historical natural hazards, with some reference to the ensuing disasters (see  Hazard,  Geohazards,  Disasters,  Natural Hazard). Therefore, pollution, famines, and epidemics and natural hazards caused by humans (e.g., desertification) are not considered here. Typical fast events, such as earthquakes, and slower changes, such as climatic change that affected vast areas, and slower pervasive processes (e.g., karst dissolution) with an abrupt end (e.g., collapse of infrastructure), are included. Some of these fast and slower phenomena may have a significant geomorphological-environmental impact with long-lasting repercussions on civilizations (Trifonov and Karakhanyan, 2004; Leroy, 2012, in press).

This entry focuses on historical natural disasters which have: (1) affected the environment, resources, or material culture so much that they caused...
This is a preview of subscription content, log in to check access.


  1. Abelson, M., Yechieli, Y., Crouvi, O., Baer, G., Wachs, D., Bein, A., and Shtivelman, V., 2006. Evolution of the Dead Sea sinkholes. In Enzel, Y., Agnon, A., and Stein, M. (eds.), New Frontiers in Dead Sea Paleoenvironmental Research. Boulder, CO: Geological Society of America, Special papers, 401, pp. 241–253.CrossRefGoogle Scholar
  2. Aceituno, P., Prieto, Md. R., Solari, M. E., Martínez, A., Poveda, G., and Falvey, M., 2009. The 1877–1878 El Niño episode: associated impacts in South America. Climatic Change, 92, 389–416.CrossRefGoogle Scholar
  3. Alexandrovskiy, A. L., 1996. Natural environment as seen in soil. Eurasian Soil Science, 29(3), 245–254.Google Scholar
  4. Alexandrovskiy, A. L., Glasko, M. P., Krenke, N. A., and Chichagova, O. A., 2004. Buried soils of floodplains and paleoenvironmental changes in the Holocene. Revista Mexicana de Ciencias Geológica, 21, 9–17.Google Scholar
  5. Ambraseys, N. N., 2005. The seismic activity in Syria and Palestine during the middle of the 8th century; an amalgamation of historical earthquakes. Journal of Seismology, 9, 115–125.CrossRefGoogle Scholar
  6. Anzidei, M., Carapezza, M. L., Esposito, A., Giordano, G., Lelli, M., and Tarchini, L., 2008. The Albano Maar lake high-resolution bathymetry and dissolved CO2 budget (Colli Albani volcano, Italy): constrains to hazard evaluation. Journal of Volcanology and Geothermal Research, 171, 258–268.CrossRefGoogle Scholar
  7. Arnaud, F., Revel, M., Chapron, E., Desmet, M., and Tribovillard, N., 2005. 7200 Years of Rhône river flooding activity in lake Le Bourget: a high-resolution sediment record of NW Alps hydrology. The Holocene, 15(3), 420–428.CrossRefGoogle Scholar
  8. Avraham, Z.-V., Lazar, M., Schattner, U., and Marko, Sh, 2005. The Dead sea fault and its effect in civilization. In Wenzel, F. (ed.), Perspectives in modern seismology. Berlin Heidelberg: Springer, pp. 145–168.Google Scholar
  9. Baillie, M. G. L., 1999. Exodus to Arthur: Catastrophic Encounters with Comets. London: B.T. Batsford.Google Scholar
  10. Baillie, M. G. L., 2008. Proposed re-dating of the European ice core chronology by seven years prior to the 7th century AD. Geophysical Research Letters, 35, L15813.CrossRefGoogle Scholar
  11. Barbano, M. S., Azzaro, R., and Grasso, D. E., 2005. Earthquake damage scenarios and seismic hazard of Messina, north-eastern Sicily (Italy) as inferred from historical data. Journal of Earthquake Engineering, 9(6), 805–830.Google Scholar
  12. Bayanov, N. G., 2007. Preliminary results of palaeolimnological study of Svetloyar Lake and stages of its limnogenesis. Izvestia RGO, 139(5), 73–80 (in Russian).Google Scholar
  13. Bertrand, S., Castiaux, J., and Juvigné, E., 2008b. Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue lake (southern volcanic zone, Chile, 40°S). Quaternary Research, 70(3), 343–357.CrossRefGoogle Scholar
  14. Bertrand, S., Charlet, F., Chapron, E., Fagel, N., and De Batist, M., 2008a. Reconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39°S. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 301–322.CrossRefGoogle Scholar
  15. Bertrand, S., Doner, L., Akçer On, S., Sancar, U., Schudack, U., Mischke, S., Cagatay, N., and Leroy, S. A. G., 2011. Sedimentary record of coseismic subsidence in Hersek coastal lagoon (Izmit Bay, Turkey) and the Late Holocene activity of the North Anatolian Fault. Geochemistry Geophysics Geosystems, 12(6), Q06002, doi:10.1029/2011GC003511. 17 pages.CrossRefGoogle Scholar
  16. Besonen, M. R., Bradley, R. S., Mudelsee, M., Abbott, M. B., and Francus, P., 2008. A 1,000-year, annually-resolved record of hurricane activity from Boston, Massachusetts. Geophysical Research Letters, 35, L14705.CrossRefGoogle Scholar
  17. Björnsson, H., 2002. Subglacial lakes and jökulhlaups in Iceland. Global and Planetary Change, 53, 255–271.Google Scholar
  18. Brooks, N., 2006. Cultural responses to aridity in the middle Holocene and increased social complexity. Quaternary International, 151, 29–49.CrossRefGoogle Scholar
  19. Brown, H., 2004. “The air was fire”: fire behavior at Peshtigo in 1871. Fire Management Today, 64(4), 20–30.Google Scholar
  20. Bush, M. B., Silman, M. R., McMichael, C., and Saatchi, S., 2008. Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philosophical Transactions of the Royal Society B, 363, 1795–1802.CrossRefGoogle Scholar
  21. Buzin, V. A., Klaven, A. B., and Kopaliani, Z. D., 2007. Laboratory modelling of ice jam floods on the Lena River. In Vasiliev, O. F., van Gelder, P. H. A. J. M., Plate, E. J., and Bolgov, M. V. (eds.), Extreme Hydrological Events: New Concepts for Security. NATO Science Series: IV: Earth and Environmental Sciences, 78, pp. 269–277.CrossRefGoogle Scholar
  22. Carcaillet, C., Almquist, H., Asnong, H., Bradshaw, R. H. W., Carrión, J. S., Gaillard, M.-J., Gajewski, K., Haas, J. N., Haberle, S. G., Hadorn, P., Müller, S. D., Richard, P. J. H., Richoz, I., Rösch, M., Sánchez Goñi, M. F., von Stedingk, H., Stevenson, A. C., Talon, B., Tardy, C., Tinner, W., Tryterud, E., Wick, L., and Willis, K. J., 2002. Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere, 49, 845–863.CrossRefGoogle Scholar
  23. Carcaillet, C., Bergeron, Y., Richard, P. J. H., Fréchette, B., Gauthier, S., and Prairie, Y. T., 2001. Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime? Journal of Ecology, 89, 930–946.CrossRefGoogle Scholar
  24. Cashman, K. V., and Giordano, G., 2008. Volcanoes and human history. Journal of Volcanology and Geothermal Research, 176, 325–329.CrossRefGoogle Scholar
  25. Cassidy, W. A., and Renard, M. L., 1996. Discovering research value in the campo del cielo, Argentina, meteorite craters. Meteoritics &Planetary Science, 31, 433–448.CrossRefGoogle Scholar
  26. Chambers, F. M., Mauquoy, D., Brain, S. A., Blaauw, M., and Daniell, J. R. G., 2007. Globally synchronous climate change 2,800 years ago: proxy data from peat in South America. Earth and Planetary Science Letters, 253, 439–444.CrossRefGoogle Scholar
  27. Chubarova, N. Yu., Prilepsky, N. G., Rublev, A. N., and Riebau, A. R., 2008. Chapter 11 a mega-fire event in central Russia: fire weather, radiative, and optical properties of the atmosphere, and consequences for subboreal forest plants. Developments in Environmental Sciences, 8, 247–264.CrossRefGoogle Scholar
  28. Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., and Le Roy Ladurie, E., 2004. Grape ripening as a past climate indicator. Nature, 432, 289–290.CrossRefGoogle Scholar
  29. Clague, J. J., and Evans, S. G., 2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews, 19, 1763–1783.CrossRefGoogle Scholar
  30. Coombes, P., and Barber, K., 2005. Environmental determinism in Holocene research: causality or coincidence? Area, 37(3), 303–311.CrossRefGoogle Scholar
  31. Costa, P., Leroy, S. A. G., Dinis, J. L., Dawson, A., and Kortekaas, S., 2012. Recent high-energy marine events in the sediments of the Lagoa de Óbidos and Martinhal (Portugal): recognition, age and likely causes. Natural Hazards & Earth System Science, 12, 1367–1380.CrossRefGoogle Scholar
  32. CRED, 2009. EM-Dat, the international disaster database. http://www.emdat.be/. Last accessed 16 March 2010.
  33. Davies, T. R. H., 1991. Research of fluvial processes in mountains – a change of emphasis. In Armanini, A., and Di Silvio, G. (eds.), Fluvial Hydraulics of Mountain Regions. Berlin: Springer, pp. 251–260.CrossRefGoogle Scholar
  34. Diamond, J., 2005. Collapse: How Societies Choose to Fail or Succeed. New York: Viking.Google Scholar
  35. Fagan, B., 2000. Floods, Famines and Emperors. London: Pimlico.Google Scholar
  36. Fauria, M. M., and Johnson, E. A., 2008. Climate and wildfires in the North American boreal forest. Philosophical Transactions of the Royal Society B, 363, 2317–2329.Google Scholar
  37. Fink, A. H., Brücher, T., Krüger, A., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U., 2004. The 2003 European summer heatwaves and drought – synoptic diagnosis and impacts. Weather, 59(8), 209–216.CrossRefGoogle Scholar
  38. Fonseca, J. D., 2004. 1755 The Lisbon earthquake. Lisbon: Argumentum.Google Scholar
  39. Frank, N. L., and Husain, S. A., 1971. The deadliest tropical cyclone in history? Bulletin of the American Meteorological Society, 52(6), 438–444.CrossRefGoogle Scholar
  40. Funiciello, R., Giordano, G., and De Rita, D., 2003. The Albano maar lake (Colli Albani volcano, Italy): recent volcanic activity and evidence of pre-roman Age catastrophic lahar events. Journal of Volcanology and Geothermal Research, 123, 43–61.CrossRefGoogle Scholar
  41. Galadini, F., Hinzen, K.-G., and Stiros, S., 2006. Archaeoseismology: methodological issues and procedure. Journal of Seismology, 10, 395–414.CrossRefGoogle Scholar
  42. García, R., Gimeno, L., Hernández, E., Prieto, R., and Ribera, R., 2000. Reconstructing the North Atlantic atmospheric circulation in the 16th, 17th and 18th centuries from historical sources. Climate Research, 14, 147–151.CrossRefGoogle Scholar
  43. Glaser, R., and Stangl, H., 2003. Historical floods in the Dutch Rhine delta. Natural Hazards and Earth System Sciences, 3, 605–613.CrossRefGoogle Scholar
  44. Golyeva, A., and Terhorst, B., 2003. Biomorphic analysis of paleosols in the upper Pleistocene loess-paleosol sequence of gunderding (upper Austria). Tübinger Geowissenschaftliche Arbeiten, D, 9, 106–115.Google Scholar
  45. Gotz, A., and Zimmermann, M., 1991. The 1991 rock slides in randa: causes and consequences. Landslide News, 7(3), 22–25.Google Scholar
  46. Grissino-Mayer, H. D., and Swetnam, T. W., 2000. Century-scale climate forcing of fire regimes in the American southwest. The Holocene, 10(2), 213–220.CrossRefGoogle Scholar
  47. Grottoli, A. G., and Eakin, M. C., 2007. A review of modern coral δ18O and Δ14C proxy records. Earth-Science Reviews, 81, 67–91.CrossRefGoogle Scholar
  48. Guidoboni, M., and Ebel, J. E., 2009. Earthquakes and Tsunamis in the Past. A Guide to Techniques in Historical Seismology. Cambridge: Cambridge University Press.Google Scholar
  49. Gunn, A. M., 2007. Yellow River China flood 1887. In Encyclopedia of Disasters: Environmental Catastrophes and Human Tragedies. Westport, Conn: Greenwood Press, pp. 141–144.Google Scholar
  50. Guzzetti, F., 2000. Landslide fatalities and the evaluation of landslide risk in Italy. Engineering Geology, 58(2), 89–107.CrossRefGoogle Scholar
  51. Hassan, F. A., 2007. Extreme Nile floods and famines in medieval Egypt (AD 930–1500) and their climatic implications. Quaternary International, 173–174, 101–112.CrossRefGoogle Scholar
  52. Heim, A., 1882. Der Bergsturz von Elm. Deutsche Geologische Gesellschaft für Zeitschrift, 34, 74–115.Google Scholar
  53. Horn, S., and Schmincke, H.-U., 2000. Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bulletin of Volcanology, 61(8), 537–555.CrossRefGoogle Scholar
  54. Hou, J.-J., Han, M.-K., Chai, B.-L., and Han, H.-Y., 1998. Geomorphological observations of active faults in the epicentral region of the Huaxian large earthquake in 1556 in Shaanxi Province, China. Journal of Structural Geology, 20(5), 549–557.CrossRefGoogle Scholar
  55. Huggett, R., 2007. Fundamentals of Geomorphology. London: Routledge.Google Scholar
  56. ICSU, 2005. Science and natural hazards. www.icsu.org/Gestion/img/ICSU_DOC_DOWNLOAD/865_DD_FILE_Hazards_Report_Final.pdf. Last accessed 16 March 2010.
  57. Italian National Institute of Geophysics and Volcanology, 2006. Summary of the eruptive history of Mt. Vesuvius Osservatorio Vesuviano. http://www.ov.ingv.it/inglese/vesuvio/storia/storia.htm. Last accessed 10 March 2010.
  58. Iturrizaga, L., 2005. New observations on present and prehistorical glacier-dammed lakes in the Shimshal valley (Karakoram mountains). Journal of Asian Earth Sciences, 25, 545–555.CrossRefGoogle Scholar
  59. Karcz, I., 2004. Implications of some early Jewish sources for estimates of earthquake hazard in the holy land. Annals of Geophysics, 47, 759–792.Google Scholar
  60. Kondorskaya, N. V., and Shebalin, N. V., 1977. New Catalog of Strong Earthquakes on the Territory of the USSR. Moscow: Nauka (in Russian).Google Scholar
  61. Krinov, E. L., 1966. The sikhote-aline iron meteorite shower. In Beynon, M. M. (ed.), Giant Meteorites. New York: Pergamon Press, pp. 266–376.Google Scholar
  62. Kundt, W., 2001. The 1908 Tunguska catastrophe: an alternative explanation. Current Science, 81(4), 399–407.Google Scholar
  63. Lamoreaux, Ph. E., and Newton, J. G., 1986. Catastrophic subsidence: an environmental hazard, Shelby county, Alabama. Environmental Geology, 8(1–2), 25–40.Google Scholar
  64. Leroy, S. A. G., 2006. From natural hazard to environmental catastrophe, past and present. Quaternary International, 158–1, 4–12.CrossRefGoogle Scholar
  65. Leroy, S. A. G., 2012. Natural hazards, landscapes, and civilizations. In Shroder, J., Jr., James, L. A., Hardon, C., and Clague, J. (eds.), Treatise on Geomorphology. San Diego, CA: Academic Press, Vol. 13. 14 pages (in press).Google Scholar
  66. Leroy, S. A. G., Boyraz, S., and Gürbüz, A., 2009. High-resolution palynological analysis in Lake Sapanca as a tool to detect earthquakes on the North Anatolian fault. Quaternary Science Reviews, 28, 2616–2632.CrossRefGoogle Scholar
  67. Leroy, S. A. G., Marco, S., Bookman, R., and Miller, Ch. S., 2010. Impact of earthquakes on agriculture during the roman-byzantine period in the Dead Sea laminated sediment. Quaternary Research, 73, 191–200.CrossRefGoogle Scholar
  68. Likhachev, D. A., Dmitriev, L. A., Alekseev, A. A., and Pnyrko, N. V. (eds.), 1997. Biblioteka Literatury Drevnei Rusi, T. 5: XIII vek. Bibliotheca of Literature of Ancient Russia, Vol. 5: XIII c. Nauka: St-Petersburg (in Russian).Google Scholar
  69. Luongo, G., Perrotta, A., Scarpati, C., De Carolis, E., Patricelli, G., and Ciarallo, A., 2003. Impact of the AD 79 explosive eruption on Pompeii II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties. Journal of Volcanology and Geothermal Research, 126, 169–200.CrossRefGoogle Scholar
  70. Madsen, H., and Jakobsen, F., 2004. Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal. Coastal Engineering, 51, 277–296.CrossRefGoogle Scholar
  71. Magilligan, F. J., Gomez, B., Mertes, L. A. K., Smith, L. C., Smith, N. D., Finnegan, D., and Garvin, J. B., 2002. Geomorphic effectiveness, sandur development, and the pattern of landscape response during jökulhlaups: skeiðoardsandur, southeastern Iceland. Geomorphology, 44(1–2), 95–113.CrossRefGoogle Scholar
  72. Major, J. J., 2003. Post-eruption hydrology and sediment transport in volcanic river system. Water Resources Impact, 5, 10–15.Google Scholar
  73. Major, J. J., and Scott, K. M., 1988. Volcaniclastic sedimentation in the Lewis River Valley, Mount St. Helens, Washington; processes, extent, and hazards. U.S. Geological Survey Bulletin, 1383-D.Google Scholar
  74. Mamo, B., Strotza, L., and Dominey-Howes, D., 2009. Tsunami sediments and their foraminiferal assemblages. Earth-Science Reviews, 96(4), 263–278.CrossRefGoogle Scholar
  75. Marco, S., 2008. Recognition of earthquake-related damage in archaeological sites: examples from the Dead Sea fault zone. Tectonophysics, 453, 148–156.CrossRefGoogle Scholar
  76. Maréchal, J. C., Ladouche, C., and Dörfliger, N., 2008. Karst flash flooding in a Mediterranean karst, the example of Fontaine de nîmes. Engineering Geology, 99(3–4), 138–146.CrossRefGoogle Scholar
  77. Marshak, S., 2004. Essentials of Geology. New York: W.W. Norton & Company.Google Scholar
  78. Meunier, J. D., and Colin, F. (eds.), 2001. Phytoliths: Applications in Earth Sciences and Human History. Proceedings of the 2nd International Meeting on Phytolith Research. Lisse: A.A. Balkema Publishers.Google Scholar
  79. Miller, D. L., Mora, C. I., Grissino-Mayer, H. D., Mock, C. J., Uhle, M. E., and Sharp, Z., 2006. Tree-ring isotope records of tropical cyclone activity. Proceedings of the National Academy of Sciences, 103(39), 14294–14297.CrossRefGoogle Scholar
  80. Mingteh, Ch, 2003. Forest Hydrology: An Introduction to Water and Forests. Boca Raton, FL: CRC Press.Google Scholar
  81. Morales, J. A., Borrego, J., San Miguel, E. G., López-González, N., and Carro, B., 2008. Sedimentary record of recent tsunamis in the Huelva estuary (southwestern Spain). Quaternary Science Reviews, 27(7–8), 734–746.CrossRefGoogle Scholar
  82. NERC, 2010. Natural hazards. http://www.nerc.ac.uk/research/issues/naturalhazards/. Last accessed 16 March 2010.
  83. Nikonov, A. A., 1998. Chronicle of Askhabat catastrophe. Herald of the DGGGMS RAS, 2(4). http://www.scgis.ru/russian/cp1251/h_dgggms/ca_2-1998.htm#1. Last accessed 2 February 2010.
  84. Nikonov, A. A., 2000. Seismic potential of Crimean region: comparison of regional maps and parameters of identified events. Fizika Zemli, 7, 53–62 (in Russian).Google Scholar
  85. Nikonov, A. A., 2009. Earthquakes…: The Past, The Present, and Prediction. URSS (in Russian): Moscow.Google Scholar
  86. NOAA, 2010. Images of geologic hazards. http://www.ngdc.noaa.gov/mgg/image/hazardsimages.html. Last accessed on 16 March 2010.
  87. Ol’Khovatov, A. Yu., 2003. Geophysical circumstances of the 1908 Tunguska event in Siberia, Russia. Earth, Moon, and Planets, 93(3), 163–173.CrossRefGoogle Scholar
  88. Oppenheimer, C., 2003. Climactic, environmental, and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography, 27, 230–259.CrossRefGoogle Scholar
  89. Page, M. J., Reid, L. M., and Linn, I. H., 1999. Sediment production from cyclone Bola landslides, Waipaoa catchment. Journal of Hydrology (New Zealand), 38(2), 289–308.Google Scholar
  90. Pearson, C., Manning, S. W., Coleman, M., and Jarvis, K., 2005. Can tree-ring chemistry reveal absolute dates for past volcanic eruptions? Journal of Archaeological Science, 32, 1265–1274.CrossRefGoogle Scholar
  91. Piyp, B. I., 2005. Secret tsunami. Priroda, 5, 36–43.Google Scholar
  92. Prescott, J. R., Robertson, G. B., Shoemaker, C., Shoemaker, E. M., and Wynn, J., 2004. Luminescence dating of the Wabar meteorite craters, Saudi Arabia. Journal of Geophysical Research, 109, E01008.CrossRefGoogle Scholar
  93. Quanterra, 2003. Short guide about slope instabilities between Lausanne and Zermatt (Switzerland). (18) Randa. http://www.quanterra.org/guide/guide1_18.htm. Last accessed 26 February 2010.
  94. Rubtsov, V., 2009. The Tunguska Mystery. New York: Springer.CrossRefGoogle Scholar
  95. Ruiz, F., Abad, M., Cáceres, L. M., Vidal, J. R., Carretero, M. I., Pozo, M., and Gonzáles-Regalado, M. L., 2010. Ostracods as tsunami tracers in Holocene sequences. Quaternary Research, 73, 130–135.CrossRefGoogle Scholar
  96. Satkunas, J., Marcinkevicius, V., Mikulenas, V., and Taminskas, J., 2007. Rapid development of karst landscape in North Lithuania – monitoring of denudation rate, site investigations and implications for management. GFF, 129(4), 345–350.CrossRefGoogle Scholar
  97. Sawai, Y., Horton, B. P., and Nagumo, T., 2004. The development of a diatom-based transfer function along the pacific coast of eastern Hokkaido, northern Japan — an aid in paleoseismic studies of the Kuril subduction zone. Quaternary Science Reviews, 23(23–24), 2467–2483.CrossRefGoogle Scholar
  98. Schultz, P. H., Zárate, M., Hames, B., Koeberl, C., Bunch, T., Storzer, D., Renne, P., and Wittke, J., 2004. The quaternary impact record from the Pampas, Argentina. Earth and Planetary Science Letters, 219, 221–238.CrossRefGoogle Scholar
  99. Schuster, R. L., and Highland, L. M., 2004. Impact of landslides and innovative landslide-mitigation measures on the natural environment. In International Conference on Slope Engineering, Hong Kong, China, December 8–10, 2003, keynote address, Proceedings 29.Google Scholar
  100. Schuster, R. L., and Highland, L. M., 2007. Overview of the effects of mass wasting on the natural environment. Environmental and Engineering Geoscience, 13(1), 25–44.CrossRefGoogle Scholar
  101. Schwab, M. J., Werner, P., Dulski, P., McGee, E., Nowaczyk, N., Bertrand, S., and Leroy, S. A. G., 2009. Palaeolimnology of lake sapanca and identification of historic earthquake signals, northern Anatolian fault zone (Turkey). Quaternary Science Reviews, 28, 991–1005.CrossRefGoogle Scholar
  102. Shen, C.-C., Lee, T., Liu, K.-K., Hsu, H.-H., Edwards, R. L., Wang, C.-H., Lee, M.-Y., Chen, Y.-G., Lee, H.-J., and Sun, H.-T., 2005. An evaluation of quantitative reconstruction of past precipitation records using coral skeletal Sr/Ca and δ18O data. Earth and Planetary Science Letters, 237(3–4), 370–386.CrossRefGoogle Scholar
  103. Shoaei, Z., and Ghayoumian, J., 1998. Seimareh landslide, the largest complex slide in the world. In Proceedings Eight International Congress of the International Association for Engineering Geology and the Environment, 1–5, pp. 1337–1342.Google Scholar
  104. Stiros, S. C., 2010. The 8.5+ magnitude, AD365 earthquake in Crete: coastal uplift, topography changes, archaeological and historical signature. Quaternary International, 216(1–2), 54–63.CrossRefGoogle Scholar
  105. Stothers, R. B., 1984. The great tambora eruption in 1815 and its aftermath. Science, 224(4654), 1191–1198.CrossRefGoogle Scholar
  106. SwissRe, 2009. Natural catastrophes and man-made disasters in 2008: North America and Asia suffer heavy losses. Sigma, 2. www.swissre.com/sigma. Last accessed 16 March 2010.
  107. Torn, M. S., and Fried, J. S., 1992. Predicting the impacts of global warming on wildland fire. Climatic Change, 21(3), 257–274.CrossRefGoogle Scholar
  108. Trifonov, V. G., and Karakhanyan, A. S., 2004. Geodynamics and the History of Civilization. Nauka (in Russian): Moscow.Google Scholar
  109. Ulomov, V. I., 1971. Deformation of rocks in the source area of the Tashkent, April 26, 1966 earthquake. Izvestia Akademii Nauk SSSR, Ser. Fizika Zemli, 9: 22–30. (in Russian).Google Scholar
  110. USGS, 2009. Science for a changing world. The Great 1906 San Francisco Earthquake. http://earthquake.usgs.gov/regional/. Last accessed 4 March 2010.
  111. USGS, 2010a. Natural hazards gateway. http://www.usgs.gov/hazards/. Last accessed 16 March 2010.
  112. van der Werf, G. R., Dempewolf, J., Trigg, S. N., Randerson, J. T., Kasibhatla, P. S., Giglio, L., Murdiyarso, D., Peters, W., Morton, D. C., Collatz, G. J., Dolman, A. J., and DeFries, R. S., 2008. Climate regulation of fire emissions and deforestation in equatorial Asia. Proceedings of the National Academy of Sciences, 105(51), 20350–20355.CrossRefGoogle Scholar
  113. van Geel, B., Buurman, J., and Waterbolk, H. T., 1996. Archaeological and palaeoecological indications of an abrupt climate change in the Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science, 11, 451–460.CrossRefGoogle Scholar
  114. van Geel, B., Heusser, C. J., Renssen, H., and Schuurmans, C. J. E., 2000. Climatic change in Chile at around 2700 BP and global evidence for solar forcing: a hypothesis. The Holocene, 10, 659–664.CrossRefGoogle Scholar
  115. van Geel, B., Bokovenko, N. A., Burova, N. D., Chugunov, K. V., Dergachev, V. A., Dirksen, V. G., Kulkova, M., Nagler, A., Parzinger, H., van der Plicht, J., Vasiliev, S. S., and Zaitseva, G. I., 2004. Climate change and the expansion of the Scythian culture after 850 BC, a hypothesis. Journal of Archaeological Sciences, 31, 1735–1742.CrossRefGoogle Scholar
  116. Veski, S., Heinsalu, A., Lang, V., Kestlane, ü, and Possnert, G., 2004. The age of the kaali meteorite craters and the effect of the impact on the environment and man: evidence from inside the kaali craters, island of Saaremaa, Estonia. Vegetation History and Archaeobotany, 13, 197–206.CrossRefGoogle Scholar
  117. Vilanova, S. P., Nunes, C. F., and Fonseca, J. F. B. D., 2003. Lisbon 1755: a case of triggered onshore rupture? Bulletin of the Seismological Society of America, 93(5), 2056–2068.CrossRefGoogle Scholar
  118. Vorobyev, Yu. L., Akimov, B. A., and Sokolov, Yu. I., 2006. Tsunami: Warning and Protecting. Vector TiS (in Russian): MChS Russia. Moscow.Google Scholar
  119. Wang, G., and Xu, B., 1984. Brief introduction of landslides in loess in China. In Proceedings 4th International Symposium on Landslides, 2. Toronto: Canadian Geotechnical Society, pp. 197–207.Google Scholar
  120. Warburton, J., 2007. Mountain environments. In Perry, C., and Taylor, K. (eds.), Environmental Sedimentology. Oxford: Blackwell Publishing, pp. 32–74.Google Scholar
  121. Watt, S. F. L., Pyle, D. M., and Mather, T. A., 2009. The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth and Planetary Science Letters, 277, 399–407.CrossRefGoogle Scholar
  122. Weiss, H., and Bradley, R. S., 2001. What drives societal collapse? Science, 291, 609–610.CrossRefGoogle Scholar
  123. Whittow, J., 1980. Landslides and avalanches – avalanches. In Disasters: The Anatomy of Environmental Hazards. Harmondsworth: Penguin, pp. 163–170.Google Scholar
  124. Wikipedia, 2010. List of natural disasters. http://en.wikipedia.org/wiki/List_of_natural_disasters. Last accessed 16 March 2010.
  125. Yaalon, D. H., 1971. Paleopedology – Origin, Nature and Dating of Paleosols. Jerusalem: ISSS and Israel University Press.Google Scholar
  126. Zerefos, C. S., Gerogiannis, V. T., Balis, D., Zerefos, S. C., and Kazantzidis, A., 2007. Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings. Atmospheric Chemistry and Physics, 7, 4027–4042.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for the EnvironmentBrunel UniversityUxbridge (London)UK
  2. 2.Institute of Geography of RASMoscowRussia