Skip to main content

Emergency Mapping

  • Reference work entry
  • First Online:
Encyclopedia of Natural Hazards

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 510 Accesses

Synonyms

Crisis mapping

Definition

The term “Emergency mapping” refers to the creation and use of maps – paper or digital – before, during or after emergencies and disasters. While “hazard and risk mapping” is primarily used to visualize the hazards and risks during the pre-event phase, “emergency mapping” focuses on supporting response and relief efforts. Nevertheless, both types of maps are closely related to one another since hazard and risk maps can be included into emergency maps as important components. Currently “Geographic(al) Information Systems” (GIS) play a critical role in the development and use of these maps. GIS-based emergency maps are often an integral part of web-enabled crisis information management systems.

Introduction

Successful emergency management would not be possible without maps. Emergency maps visualize vital spatial information for planning and response through an easily understandable mean. One of the well-known early examples of emergency maps is the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Andrienko, G., and Andrienko, N., 2005. Visual exploration of the spatial distribution of temporal behaviors. In Proceedings of the International Conference on Information Visualisation. Los Alamitos: IEEE Computer Society, pp. 799–806.

    Google Scholar 

  • Amdahl, G., 2001. Disaster Response: GIS for Public Safety. Redlands, CA: ESRI press. 108p.

    Google Scholar 

  • American National Standards Institute, International Committee for Information Technology Standards (ANSI/INCITS), 2006. Homeland Security Mapping Standard – Point Symbology for Emergency Management ANSI/INCITS 415-2006.

    Google Scholar 

  • Board on Natural Disasters, National Research Council, 1999. Reducing Disaster Losses Through Better Information. Washington, DC: National Academy Press.

    Google Scholar 

  • Brecht, H., 2008. The application of geo-technologies after the hurricane Katrina. In Nayak, S., and Zlatanova, S. (eds.), Remote Sensing and GIS Technologies for Monitoring and Prediction of Disasters. Berlin: Springer, pp. 25–36.

    Chapter  Google Scholar 

  • Committee on Planning for Catastrophe, National Research Council, 2007. Successful Response Starts with a Map: Improving Geospatial Support for Disaster Management. Washington, DC: Committee on Planning for Catastrophe: A Blueprint for Improving Geospatial Data, Tools, and Infrastructure, The National Academy Press.

    Google Scholar 

  • Dymon, J. D., and Winter, N. L., 1993. Evacuation mapping: the utility of guidelines. Disasters, 17(1), 12–24.

    Article  Google Scholar 

  • Greene, R. W., 2002. Confronting Catastrophe: A GIS Handbook. Redlands, CA: ESRI Press. 140 p.

    Google Scholar 

  • Heide, J. van der, and van ’t Hullenaar, B., 2007. Simbolenset voor rampenbestrijding and grootschalig optreden, Eindrapport RGI-210, 33 p. Avaible from World Wide Web: http://kennis.rgi.nl (in dutch)

  • Jern, M., Brezzi, M., and Lundblad, P., 2010. Geovisual analytics tools for communicating emergency and early warning. In Konecny, M., Zlatanova, S., and Bandrova, T. L. (eds.), Geographic Information and Cartography for Risk and Crisis Management: Towards better solutions. Berlin: Springer, pp. 379–394.

    Chapter  Google Scholar 

  • Kevany, M., 2008. Improving geospatial information in disaster management through action on lessons learned from major events. In Zlatanova, S., and Li, J. (eds.), Geospatial Information Technology for Emergency Response. London/Leiden: Taylor & Francis. ISPRS book series, pp. 3–19.

    Google Scholar 

  • Kerle, N., Heuel, S., and Pfeifer, N., 2008. Real-time data collection and information integration using airborne sensors. In Zlatanova, S., and Li, J. (eds.), Geospatial Information Technology for Emergency Response. London, UK: Taylor & Francis, pp. 43–74.

    Google Scholar 

  • Konecny, M., Zlatanova, S., and Bandrova, T. (eds.), 2010. Geographic Information and Cartography for Risk and Crisis Management: Towards Better Solutions. Heidelberg/Dordrecht/London/New York: Springer, p. 446.

    Google Scholar 

  • Lapierre, A., and Cote, P., 2008. Using Open Web Services for urban data management: a testbed, resulting from an OGC initiative for offering standard CAD/GIS/BIM services. In Coors, V., Rumors, M., Fendel, E. M., and Zlatanova, S. (eds.), Urban and Regional Data Management, UDMS Annual 2007. London: Taylor & Francis, pp. 381–393.

    Google Scholar 

  • Lee, J., 2007. A three-dimensional navigable data model to support emergency response in microspatial built-environments. Annals of the Association of American Geographers, 97(3), 512–529.

    Article  Google Scholar 

  • Li, J., Zlatanova, S., and Fabbri, A. (eds.), 2007. Geomatics Solutions for Disaster Management. Berlin/Heidelberg: Springer. 444 p.

    Google Scholar 

  • Nayak, S., and Zlatanova, S. (eds.), 2008. Remote Sensing and GIS Technologies for Monitoring and Prediction of Disasters. Berlin/Heidelberg: Springer. 271 p.

    Google Scholar 

  • Oosterom, P., Zlatanova, S., and Fendel, E. M. (eds.), 2005. Geo-information for Disaster Management. Berlin/Heidelberg/New York: Springer. 1434 p.

    Google Scholar 

  • Rodarmel, C., Scott, L., Simerlink, D., and Walker, J., 2003. Multisensor fusion over the World Trade Center disaster site. Optical Engineering, 41(9), 2120–2128.

    Article  Google Scholar 

  • Snow, J., 1855. On the Mode of Communication of Cholera. London: John Churchill.

    Google Scholar 

  • SKK (Ständige Konferenz für Katastrophenvorsorge und Katastrophenschutz), 2003. Taktische Zeichen: Vorschlag einer Dienstvorschrift DV 102, SKK, Cologne.

    Google Scholar 

  • Thomas, J., and Cook, K., 2005. Illuminating the Path: The Research and Development Agenda for Visual Analytics. Available from World Wide Web: http://nvac.pnl.gov/.

  • Todin, E., Catelli, C., and Pani, G., 2004. FLOODSS, flood operational DSS. In Balabanis, P., Bronstert, A., Casale, R., and Samuels, P. (eds.), Ribamod: River Basin Modelling, Management and Flood Mitigation. Luxembourg: European Commission, Directorate-General Science, Research and Development, Environment and Climate Programme.

    Google Scholar 

  • U.S. Department of Homeland Security (U.S. DHS), Federal Emergency Management Agency Region IX and Governor’s Office of Emergency Services, 2008. California Catastrophic Incident Base Plan: Concept of Operations.

    Google Scholar 

  • Zhang, X., Zhang, J., Kuenzer, C., Voigt, S., and Wagner, W., 2004. Capability evaluation of 3-5 micrometer and 8-12.5 micrometer airborne thermal data for underground coal fire detection. International Journal of Remote Sensing, 25(12), 2245–2258.

    Article  Google Scholar 

  • Zhang, Y., and Kerle, N., 2008. Satellite remote sensing for near-real time data collection. In Zlatanova, S., and Li, J. (eds.), Geospatial Information Technology for Emergency Response. London: Taylor & Francis, pp. 75–102.

    Google Scholar 

  • Zlatanova, S., and Li, J. (eds.), 2008. Geospatial Information Technology for Emergency Response. London: Taylor & Francis. 381 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Fiedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fiedrich, F., Zlatanova, S. (2013). Emergency Mapping. In: Bobrowsky, P.T. (eds) Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4399-4_115

Download citation

Publish with us

Policies and ethics