Encyclopedia of Soil Science

2008 Edition
| Editors: Ward Chesworth

Capillary Pressure

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-3995-9_87
Two fluids are immiscible if they retain a distinct phase identity when they are mixed. As a consequence of the different degrees of attraction between molecules of a different nature a tension exists at the interface, which is called surface tension. The surface tension σ has the dimension of a force per unit length of the interface edge (Figure C7).
This is a preview of subscription content, log in to check access

Bibliography

  1. Bloomsburg, G.L., and Corey, A.T., 1964. Diffusion of entrapped air from porous media. Hydrology Paper 5. Fort Collins: Colorado State University.Google Scholar
  2. Bomba, S.J., and Miller, E.E., 1967. Secondary‐scan Hysteresis in Glass‐bead Media. Preprint for presentation in the discussion section of the 1967 Meeting of the Soil Science Society of America, 62 pp.Google Scholar
  3. Brooks, R.H., and Corey, A.T., 1964. Hydraulic properties of porous media. Hydrology Paper 3. Fort Collins: Colorado State University, 27p.Google Scholar
  4. Bruce, R.R., 1972. Hydraulic conductivity evaluation of the soil profile from soil water retensions. Soil Sci. Soc. Am. Proc., 36: 555–560.CrossRefGoogle Scholar
  5. Cary, J.W., 1967. Experimental measurements of soil moisture hysteresis and entrapped air. Soil Sci., 104: 174–180.CrossRefGoogle Scholar
  6. Enderby, J.A., 1955. The domain model of hysteresis. 1. Independent domains. Faraday Soc. Trans., 51: 835–848.CrossRefGoogle Scholar
  7. Everett, D.H., 1954. A General approach to hysteresis. 3. A Formal treatment of the independent domain model of hysteresis. Faraday Soc. Trans., 50: 1077–1096.CrossRefGoogle Scholar
  8. Everett, D.H., 1955. A general approach to hysteresis. 4. An alternative formulation of the domain model. Faraday Soc. Trans., 51: 1551–1557.CrossRefGoogle Scholar
  9. Everett, D.H., 1967. Adsorption hysteresis. In Flood, E.A., ed., Solid Gas Interface. New York: Marcel Dekker, 1055–1113.Google Scholar
  10. Everett, D.H., and Smith, F.W., 1954. A general approach to hysteresis, 2. Development of the domain theory. Faraday Soc. Trans., 50: 187–197.CrossRefGoogle Scholar
  11. Everett, D.H., and Whitton, W.I., 1952. A general approach to hysteresis. 1. Faraday Soc. Trans., 48: 749–752.CrossRefGoogle Scholar
  12. Gardner, W.R., 1959. Mathematics of isothermal water conduction in unsaturated soils. Highway Res. Board, Nat. Res. Council, Rep., 40: 78–82.Google Scholar
  13. van Genuchten, M.Th., 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44: 892–898.CrossRefGoogle Scholar
  14. Haverkamp, R., Reggiani, P., Ross, P.J., and Parlange, J.‐Y., 2002. Soil water hysteresis prediction model based on theory and geometric scaling. In Smiles, D., Raats, P., and Warrick, A., eds., Heat and Mass Transfer in the Natural Environment: A Tribute to J.R. Philip, Chapter 6.2. Monograph of the American Geophysical Union 129, pp. 213–246.Google Scholar
  15. King, L.G., 1964. Imbibition of fluids by porous solids. Ph.D. Thesis, Fort Collins: Colorado State University, 231 pp.Google Scholar
  16. Kosugi, K., Hopmans, J.W., and Dane, J.H., 2002. Parametric models. In Dane, J.H., and Topp, G.C., eds., Methods of Soil Analysis, Part 4 Physical Methods. Soil Science Society of America Book Series Number 5. Madison, WI: Soil Science Society of America, pp. 739–758.Google Scholar
  17. Morel‐Seytoux, H.J., 1969. Introduction to flow of immiscible liquids in porous media. In deWiest, R. ed., Flow Through Porous Media. New York: Academia, pp. 455–516.Google Scholar
  18. Morrow, N.R., and Harris, C.C., 1965. Capillary equilibrium in porous materials. Soc. Petrol. Eng. J., 5: 12–14.CrossRefGoogle Scholar
  19. Mualem, Y., 1973. Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resour. Res., 9(5): 1324–1331.CrossRefGoogle Scholar
  20. Mualem, Y., 1974. A conceptual model of hysteresis. Water Resour. Res., 10(3): 514–520.CrossRefGoogle Scholar
  21. Mualem, Y., 1976. Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12(6): 1248–1254.CrossRefGoogle Scholar
  22. Mualem, Y., and Dagan, G., 1972. Hysteresis in Unsaturated Porous Media: a critical review and new simplified approach. Rep. 4, Proj. A10‐SWC‐177. Haifa: Technion‐Israel Institute of Technology, 93 pp.Google Scholar
  23. Mualem, Y., and Dagan, G., 1975. A dependent domain model of capillary hysteresis. Water Resour. Res., 11(3): 452–460.CrossRefGoogle Scholar
  24. Mualem, Y., and Dagan, G., 1976. Methods of predicting the hydraulic conductivity of unsaturated soils. Project 442. Haifa: Technion–Israel Institute of Technology, 78 pp.Google Scholar
  25. Néel, L., 1942. Théories des lois d'aimantation de Lord Rayleigh, 1. Cahiers Phys., 12: 1–20.Google Scholar
  26. Néel, L., 1943. Théories des lois d'aimantation de Lord Rayleigh, 2. Cahiers Phys., 13: 19–30.Google Scholar
  27. Philip, J.R., 1964. Similarity hypothesis for capillary hysteresis in porous materials. J. Geophys. Res., 69(8): 1553–1562.CrossRefGoogle Scholar
  28. Poulovassilis, A., 1962. Hysteresis of pore water, an application of the concept of independent domains. Soil Sci., 93: 405–412.CrossRefGoogle Scholar
  29. Poulovassilis, A., 1970a. Hysteresis of pore water in granular porous bodies. Soil Sci., 109: 5–12.CrossRefGoogle Scholar
  30. Poulovassilis, A., 1970b. The effect of the entrapped air on the hysteresis curves of a porous body and its hydraulic conductivity. Soil Sci., 109: 154–162.CrossRefGoogle Scholar
  31. Poulovassilis, A., and Childs, E.E., 1971. The hysteresis of pore water: The nonindependence of domain. Soil Sci., 112: 301–312.CrossRefGoogle Scholar
  32. Preisach, F., 1935. Uber die magnetische Nachwirkung. Zeitschr. Physik, 94: 277–302.CrossRefGoogle Scholar
  33. Stallman, R.W., 1969. Multi‐phase fluids in porous media – A review of theories pertinent to hydrological studies. U.S. Geological Survey Prof. Pap., 411‐E: 49.Google Scholar
  34. Staple, W.J., 1964. Moisture tension, diffusivity and conductivity of a loam soil during wetting and drying. Can. J. Soil Sci., 45: 78–86.CrossRefGoogle Scholar
  35. Sumner, M.E. 2000. Handbook of Soil Science. Boca Raton, Fla: CRC Press (various pagings).Google Scholar
  36. Talsma, T., 1970. Hysteresis in two sands and the independent domain model. Water Resour. Res., 6(3): 964–970.CrossRefGoogle Scholar
  37. Topp, G.C., 1969. Soil water hysteresis measured in a sandy loam compared with the hysteretic domain model. Soil Sci. Soc. America Proc., 33: 645–651.CrossRefGoogle Scholar
  38. Topp, G.C., 1971a. Soil water hysteresis in silt loam and clay loam soils. Water Resour. Res., 7(4): 914–920.CrossRefGoogle Scholar
  39. Topp, G.C., 1971b. Soil‐water hysteresis: the domain model theory extended to pore interaction conditions. Soil Sci. Soc. Am. Proc., 35: 219–225.CrossRefGoogle Scholar
  40. Topp, G.C., and Miller, E.E., 1966. Hysteretic moisture characteristics and hydraulic conductivities for glass‐bead media. Soil Sci. Soc. Am. Proc., 30: 156–162.CrossRefGoogle Scholar
  41. Vachaud, G., 1966. Verification de la loi de Darcy generalisee et determination de la conductivite capilaire a partir d'une infiltration horizontal. Wageningen: AIHS‐Symposium, 277–292.Google Scholar
  42. Vachaud, G., and Thony, J.L., 1971. Hysteresis during infiltration and redistribution in a soil column at different initial water contents. Water Resour. Res., 7(1): 111–127.CrossRefGoogle Scholar
  43. van Genuchten, M. Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44: 892–898.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux

There are no affiliations available