Encyclopedia of Soil Science

2008 Edition
| Editors: Ward Chesworth

Profile, Physical Modification

  • George R. Blake
  • Gary C. Steinhardt
  • X. Pontevedra Pombal
  • J. C. Nóvoa Muñoz
  • A. Martínez Cortizas
  • R. W. Arnold
  • Randall J. Schaetzl
  • F. Stagnitti
  • J.‐Y. Parlange
  • T. S. Steenhuis
  • Ward Chesworth
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • Otto Spaargaren
  • Ward Chesworth
  • Y. K. Soon
  • D. S. Orlov
  • Otto Spaargaren
  • J. J. Oertli
  • Jan Gliński
  • Jerzy Lipiec
  • Witold Stępniewski
  • Otto Spaargaren
  • Otto Spaargaren
  • Ward Chesworth
  • Carmela Monterroso
  • D. K. Cassel
  • R. D. Hammer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-3995-9_467

Broadly speaking, physical properties are modified by all mechanical and chemical processes that operate in soils, whether natural or human‐induced. Naturally occurring processes such as wetting and drying or freezing and thawing are not discussed here; instead, this article focuses on modifications imposed by humans, both intentionally and non‐intentionally. Modifications at three different scales are considered, the first two briefly and the third at some length. As used here, modification of physical properties refers to changes in one or more characteristics affecting root growth in the soil profile, chiefly but not entirely below the plow layer or Ap horizon.

Microscale changes are alterations of soil properties in a small volume of soil or over distances of millimeters, centimeters, or a few meters at most. Microscale changes in soil properties occur when a person walks across a garden. Normally, the soil will be compacted slightly in each footprint. Compaction results in a...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Abell, M.S., and Vimmerstedt, J.P., 1985. White oak (Quercus alba) seeding growth in relation to earth (Lumbricus terrestris) activity in Ohio surface minesoil. Ohio J. Sci., 85: 88.Google Scholar
  2. Bledsoe, L., Varsa, E.G., Chong, S.K., Olsen, F.J., Klubek, B.P., and Stucky, D.J., 1992. The effects of deep tillage of reclaimed mine soils on corn root development. In Dunker, R.E., Barnhisel, R.I., and Darmody, R.G., eds., Proceedings of the 1992 Symposium on Prime Farm land Reclamation. Aug. 10–14. St. Louis, MO: Dept. of Agronomy, University of Illinois, Urbana, pp. 51–58.Google Scholar
  3. Bowen, H.D., 1981. Alleviating mechanical impedance. In Arkin, G.F., and Taylor, H.M., eds., Modifying the Root Environment to Reduce Crop Stress, Monograph 4. St. Joseph, MI: Am. Soc. Agric. Engin., pp. 21–57.Google Scholar
  4. Bradford, J.M., and Peterson, G.A., 2000. Conservation tillage. Section G, chapter 10. In Sumner, M.E., Handbook of Soil Science, editor‐in‐chief.Boca Raton, FL: CRC Press (Various paginations).Google Scholar
  5. Cooper, A.W., 1971. Effects of tillage an soil compaction. In Barnes, K.K., Carleton, W.M., Taylor, H.M., Throckmorton, R.I., and Vanden Berg, G.E., eds., Compaction of Agricultural Soils. St. Joseph, MI: American Society of Agricultural Engineering, pp. 315–364.Google Scholar
  6. Crews, T.E., and Gliessman, S.R., 1991. Raised field agriculture in Tlaxcala, Mexico: An ecosystem perspective on maintenance of soil fertility. Am. J. Altern. Agriculture, 6: 9–16.CrossRefGoogle Scholar
  7. Doll, E.G., 1987. Regulation, root zone properties, and plant growth on reclaimed land. In Carlson, C.L., and Swisher, J.H., eds., Innovative Approaches to Mine Land Reclamation. Proceedings National Mined Land Reclam. Conf., St. Louis, MO, Oct. 23–29, 1986. South 111. Carbondale: Univ. Press, pp. 80–92.Google Scholar
  8. Dunker, R.E., Hooks, C.L., Vance, S.L., and Darmody, R.G., 1992. Effects of deep tillage on surface mined land in southern Illinois. In Dunker, R.E., Barnhisel, R.I., and Darmody, R.G., eds., Proceedings of the 1992 Symposium on Prime Farmland Reclamation. Aug. 10–14, St. Louis, MO. Urbana: Dept. of Agronomy, University of Illinois, pp. 59–70.Google Scholar
  9. Gantzer, C.J., and McCarty, T.R., 1987. Predicting corn yields on a clay pan soil using a productivity index. Trans. ASAE, 30: 1247–1352.CrossRefGoogle Scholar
  10. Grace, J.M., Skaggs, R.W., and Cassel, D.K., 2006. Soil physical changes associated with forest harvesting operations on an organic soil. Soil Sci. Soc. Am. J. 70: 503–509.CrossRefGoogle Scholar
  11. Grandt, A.F., 1981. Problems in reclaiming farm land inIllinois. Min. Eng., 33: 1347–1350.Google Scholar
  12. Hamblin, A.P., 1985. The influence of soil structure on water movement, crop root growth, and water uptake. Adv. Agron., 38: 95–158.CrossRefGoogle Scholar
  13. Hammer, R.D., 1992. A soil‐based productivity index to assess surface mine reclamation. In Dunker, R.E., Barnhisel, R.I., and Darmody, R.G., eds., Proceedings of the 1992 Symposium on Prime Farmland Reclamation. Aug. 10–14, St. Louis, MO. Urbana: Dept. of Agronomy, University of Illinois, pp. 221–232.Google Scholar
  14. Hammer, R.D., and Brown, J.R., 1990. 100 years of cultivation on Sanborn field – a pedologist's perspectives. In Proceedings Sanborn June Field Centennial, June 27, 1989. Univ. Missouri Agric. Exp. Sta. Spec. Pub. 415. pp 109–123.Google Scholar
  15. Hammer, R.D., Hicks, B.L., and Conkling, B., 1991. Spatial variability of the soil‐based productivity index on scraper and dragline reclaimed minesoils. In Fourth Annu. Pep., Prime Farmland Reclamation After Surface Mining. Urbana‐champaign: University of Illinois, pp. 1111–1122.Google Scholar
  16. Hammer, R.D., Malone, R.A., Coble, D., and Stallman, T., 1992. Ecological succession – its effects on soil properties and implications for surface mine reclamation. In Dunker, R.E., Barnhisel, R.I., and Darmody, R.G., eds., Proceedings of the 1992 Symposium on Prime Farmland Reclamation. Aug. 10–14. St. Louis, MO. Urbana: Dept. of Agronomy, University of Illinois, pp. 249–258.Google Scholar
  17. Hooks, C.L., and Jansen, I.J., 1986. Recording cone penetrometer developed in reclamation research. Soil Sci. Soc. Am. J., 50: 10–12.CrossRefGoogle Scholar
  18. Kiniry, L.N., Scrivner, C.L., and Keener, M.E., 1983. A soil productivity index based upon predicted water depletion and root growth. Res. Bull. 1051. Agric. Exp. Station, Univ. of Missouri‐Columbia.Google Scholar
  19. McSweeney, K., and Jansen, I.J., 1983. Soil structure and associated rooting behavior in minesoils. Soil Sci. Soc. Am. J., 48: 607–612.CrossRefGoogle Scholar
  20. Office of Surface Mining, 2003. 25th Anniversary of the Surface Mining Law. Washington, DC: U.S. Dept. of the Interior, 44 pp.Google Scholar
  21. Ogango, K.O., and Teyker, R.H., 1991. Mycorrhizal inoculation of newly constructed soil material. In Fourth Annual Report, Prime Farmland Reclamation After Surface Mining, Urbana‐Champaign: University of Illinois, pp. 1102–1107.Google Scholar
  22. Phelphs, L.B., and Holland, L.J., 1987. Soil compaction in topsoil replacement during mining reclamation. Environ. Geochem. Health, 9: 8–11.CrossRefGoogle Scholar
  23. Philo, G.R., Kolar, C.A., and Ashby, W.C., 1982. Effects of ripping on minesoil compaction and black walnut establishment. In Symposium on Surface Mining, Hydrology, Sedimentology and Reclamation. Lexington, KY, Dec. 5–10, 1982. Lexington: University of Kentucky, pp. 551–557.Google Scholar
  24. Ranjith P., Udawatta, R.P., and Henderson, G.S., 2003. Root distribution relationships to soil properties in Missouri oak stands: A productivity index approach. Soil Sci. Soc. Am. J., 67: 1869–1878.CrossRefGoogle Scholar
  25. Smout, G.A., 1987. Regulation, root zone properties, and plant growth on reclaimed land. In Carlson, C.L, and Swisher, J.H., eds., Innovative Approaches to Mined Land Reclamation. Proceedings of National Mined Land Reclamation Conference, St. Louis, MO., Oct. 28–29, 1986. Carbondale. Southern Illinois Univ. Press, pp. 123–142.Google Scholar
  26. Soil Survey Division, Bureau of Chemicals and Soils, 1938. Soils of the United States. In Soils and Men. U.S. Department of Agriculture Yearbook of Agriculture. Washington, DC: U.S. Government Printing Office, p. 1105.Google Scholar
  27. Stuckey, D.J., and Lindsey, T.C., 1982. Effect of soil compaction on growth and yield of soybeans grown in a greenhouse on several reconstructed soil profiles from prime farmland in Southern Illinois. Reclamation and Revegetation Res., 1: 297–309.Google Scholar
  28. Swain, R.W., 1975. Subsoiling, In Soil Physical Conditions and Crop Production. United Kingdom Ministry Agric., Fisheries, and Food Tech. Bull., No. 29, pp. 189–204.Google Scholar
  29. Thomas, D.J., and Cassel, O.K., 1979. Land forming Atlantic Coastal Plain soils: Crop yield relationships to soil physical and chemical properties. J. Soil Water Conserv., 34: 20–24.Google Scholar
  30. Thompson, P.J., Jansen, I.J., and Hooks, C.L., 1987. Penetrometer resistance and bulk density as parameters for predicting root system performance in mine soils. Soil Set. Soc. Am. J., 51: 1288–1293.CrossRefGoogle Scholar
  31. Wollenhaupt, N.C., Doll, E.G., and Richardson, J.L., 1982. A technique for estimating plant available soil moisture capacity from soil texture. North Dakota Acad. Sci., 36: 53.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • George R. Blake
  • Gary C. Steinhardt
  • X. Pontevedra Pombal
  • J. C. Nóvoa Muñoz
  • A. Martínez Cortizas
  • R. W. Arnold
  • Randall J. Schaetzl
  • F. Stagnitti
  • J.‐Y. Parlange
  • T. S. Steenhuis
  • Ward Chesworth
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • Otto Spaargaren
  • Ward Chesworth
  • Y. K. Soon
  • D. S. Orlov
  • Otto Spaargaren
  • J. J. Oertli
  • Jan Gliński
  • Jerzy Lipiec
  • Witold Stępniewski
  • Otto Spaargaren
  • Otto Spaargaren
  • Ward Chesworth
  • Carmela Monterroso
  • D. K. Cassel
  • R. D. Hammer

There are no affiliations available