Skip to main content

Micrometeorology

  • 247 Accesses

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Introduction

Micrometeorology is concerned with the climate close to the land surface. The central problem of micrometeorological research since its genesis has been the measurement of scalar fluxes of mass and energy to and from the Earth's surface. Pioneers in micrometeorology such as C. W. Thornthwaite, O. G. Sutton and F. Pasquill had a great interest in measuring water vapor flux as a means of determining evapotranspiration from land, and thereby answering very practical questions such as how much irrigation water a crop required. Later researchers such as J. L. Monteith became interested in carbon dioxide fluxes in order to quantify photosynthetic activity and plant productivity. Currently much activity is directed at other greenhouse gas fluxes, such as methane from bogs and nitrous oxide from cropland. A sampling of other important historical and current micrometeorological questions includes ammonia losses from manure application to address nitrogen loss and environmental...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-3995-9_354
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.99
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3995-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   699.99
Price excludes VAT (USA)

Bibliography

  • Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., et al. 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteor. Soc. 82: 2415–2434.

    CrossRef  Google Scholar 

  • Bowen, I.S., 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 25: 779–787.

    CrossRef  Google Scholar 

  • Businger, J.A., Wyngaard, J.C., Izumi, Y., and Bradley, E.F., 1971. Flux–profile relationships in the atmospheric surface layer. J. Atm. Sci. 28: 181–189.

    CrossRef  Google Scholar 

  • Demead, O.T., 1995. Novel meteorological methods for measuring trace gas fluxes. Phil. Trans. R. Soc. Lond. A 351: 383–396.

    CrossRef  Google Scholar 

  • Dyer, A.J., 1974. A review of flux‐profile relationships. Boundary‐Layer Meteor. 7: 363–372.

    CrossRef  Google Scholar 

  • Flesch, T., Wilson, J., and Yee, E., 1995. Backward‐time Lagrangian stochastic dispersion models, and their application to estimate gaseous emissions. J. Appl. Meteor. 34: 1320–1332.

    CrossRef  Google Scholar 

  • Hicks, B.B., 1976. Wind profile relationships from the ‘Wangara’ experiment. Q. J. R. Meteor. Soc. 102: 535–551.

    Google Scholar 

  • Leclerc, M., and Thurtell, G., 1990. Footprint prediction of scalar fluxes using a Markovian analysis. Boundary‐Layer Meteor. 52: 247–258.

    CrossRef  Google Scholar 

  • Monin, A.S., and Obukhov, A.M., 1954. Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Geofiz. Instit. Akad. Nauk, SSSR 24: 163–187.

    Google Scholar 

  • Moore, C.J., 1986. Frequency response corrections for eddy correlation systems. Boundary‐Layer Meteor. 37: 17–35.

    CrossRef  Google Scholar 

  • Obukhov, A., 1946. Turbulence in an atmosphere with non‐uniform temperature. Trudy Inst. Teoret. Geofiz: AN–S.S.S.R., No 1 (English Translation (1971), Boundary‐Layer Meteorol., 2: 7–29).

    Google Scholar 

  • Pasquill, F., 1949. Some estimates of the amount and diurnal variation of evaporation from a clayland pasture in fair weather spring. Q. J. R. Meteor. Soc. 75: 249–256.

    CrossRef  Google Scholar 

  • Paulson, C.A., 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9: 857–861.

    CrossRef  Google Scholar 

  • Reynolds, O., 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. A 186: 123–164.

    CrossRef  Google Scholar 

  • Richardson, L.F., 1920a. Some measurements of atmospheric turbulence. Phil. Trans. R. Soc. Lond. A 221: 1–28.

    CrossRef  Google Scholar 

  • Richardson, L.F., 1920b. The supply of energy from and to atmospheric eddies. Proc. R. Soc. Lond. A 97: 354–373.

    CrossRef  Google Scholar 

  • Schmid, H.P., 2002. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric. For. Meteor. 113: 159–183.

    CrossRef  Google Scholar 

  • Schuepp, P.H., Leclerc, M.Y., MacPherson, J.I., and Desjardins, R.L., 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary‐Layer Meteor. 50: 355–373.

    CrossRef  Google Scholar 

  • Staebler, R.M., and Fitzjarrald, D.R., 2004. Observing subcanopy CO advection. Agric. For. Meteor. 122: 139–156.

    CrossRef  Google Scholar 

  • Swinbank, W.C., 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 8: 135–145.

    CrossRef  Google Scholar 

  • Taylor, G.I., 1915. Eddy motions in the atmosphere. Phil. Trans. R. Soc. Lond. A 215: 1–26.

    CrossRef  Google Scholar 

  • Taylor, G.I., 1935. Statistical theory of turbulence. Parts I–IV. Proc. R. Soc. Lond. A 151: 421–478.

    CrossRef  Google Scholar 

  • Thornthwaite, C., and Holzman, B., 1939. The determination of evaporation from land and water surfaces. Monthly Weather Rev. 67: 4–11.

    CAS  CrossRef  Google Scholar 

  • Webb, E.K., Pearman, G.I., and Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteor. Soc. 106: 85–100.

    CrossRef  Google Scholar 

  • Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans R., et al. 2003. Energy balance closure at FLUXNET sites. Agric. For. Meteor. 113: 223–243.

    CrossRef  Google Scholar 

  • Wyngaard, J.C., Coté, O.R., and Izumi, Y., 1971. Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atm. Sci. 28: 1171–1182.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Hossner, L.R., Yatsu, E., Young, I.M., Warland, J. (2008). Micrometeorology. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_354

Download citation