Skip to main content

Microhabitats

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Soil, the most complicated biomaterial on the planet, is a system in which minerals, fluids and organisms interact, with much feedback between the component parts, at scales ranging from the molecular to the planetary. At the smallest scale microorganisms survive, reproduce and move within the soil's pore space. Therefore, the size, shape and distribution of this space exerts a major influence over the dynamics of these soil organisms. However, since a large class of microorganisms are essentially aquatic and live in water films on the surface of soil particles, it is the interaction between soil structure and moisture which exerts the greatest influence. (Young and Crawford, 2004).

Soil pore space

Although one gram of soil may contain 10 9 bacteria and 10 3 m of fungal hyphae, it has been estimated that between 0.17% of soil organic matter surfaces, and 0.02% of soil mineral surfaces are occupied by soil microorganisms (Hissett et al., 1970). Other estimates suggest that active...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-3995-9_353
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.99
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3995-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   699.99
Price excludes VAT (USA)
Figure M3

Bibliography

  • Bartoli, F., Philippy, R., Dorisse, M., Niquet, S., and Dubuit, M., 1991. Structure and self‐similarity in silty and sandy soils: the fractal approach. J. Soil Sci. 42: 167–186.

    CrossRef  Google Scholar 

  • Burns, R.G., 1990. Microorganisms, enzymes and soil colloid surfaces, Chapter 12. In De Boodt et al., eds., Soil Colloids and Their Associations in Aggregates New York: Plenum Press, pp. 337–361.

    CrossRef  Google Scholar 

  • Couteaux, M.M., 1985. Relation entre la densité apparente d'un trumus et l'aptitude a la croissance des ses Ciliés. Pedobiologia 28: 289–303.

    Google Scholar 

  • Currie, J.A., 1961. Gaseous diffusion in aeration of aggregated soils. Soil Sci. 92: 40–45.

    CrossRef  Google Scholar 

  • Derbyshire, J.F., Griffiths, B.S., Davidson, M.S., and McHardy, W.J., 1989. Ciliate distribution amongst soil aggregates. Rev. Ecol. Biol. Soil 26: 47–56.

    Google Scholar 

  • Douds, D.D., and Shenck, N.C., 1991. Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol. Biochem. 23: 177–183.

    CrossRef  Google Scholar 

  • van Elsas, J.D., van Overbeak, L.S., Feldmann, A.M., Dullemouns, A.M., and de Leeuw, O., 1991. Survival of genetically engineered Pseudomonas fluorescens in soil competition with the parent strain. FEMS Microbiol. Ecol. 85: 53–64.

    CrossRef  Google Scholar 

  • Forster, R.C., 1988. Microenvironments of soil microorganisms. Biol., Fertil., Soils 6: 189–203.

    Google Scholar 

  • Griffiths, B.S., Young, I.M., and Boag, B., 1991. Nematodes associated with the rhizosphere of barley (Hordum vulgare). Pedobiologia 35: 265–272.

    Google Scholar 

  • Hambi, Y.A., 1971. Soil water tension and the movement of rhizobia. Soil Biol. and Biochem. 3: 121–126.

    CrossRef  Google Scholar 

  • Heijnen, C.E., and van Veen, J.A., 1991. A determination of protective microhabitats for bacteria introduced into soil. Fems Micro. Ecol. 85: 73–80.

    CrossRef  Google Scholar 

  • Hissett, R., and Gray, T.R.G., 1970. Microsites and time changes in soil microbe ecology. In Anderson, and MacFayden, eds., The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Oxford: Blackwell, pp. 23–29.

    Google Scholar 

  • Kilbertus, G., 1980. Etude des microhabitats contenus dans les agrégats du sol: Leur relation avec la biomasse bactérienne et la taille des procaryotes présents. Rev., Ecol., Biol. Soil. 17: 543–557.

    Google Scholar 

  • Mandelbrot, B.B., 1983. The Fractal Geometry in Nature. New York: Freeman.

    Google Scholar 

  • Marshall, K.C., 1968. Interaction between colloidal montmorillorite and cells of Rhizobium species with different ionogenic surfaces. Biochim., Biophys., Acta 156: 179–186.

    CAS  CrossRef  Google Scholar 

  • Postma, J., and van Veen, 1990. Habitable pore space and survival of Rhizobium leguminosarum biovar Trifolii introduced into soil. Microb. Ecol. 19: 149–162.

    CAS  CrossRef  Google Scholar 

  • Powlson, D.S., 1980. The effects of grinding on microbial and non‐microbial organic matter in soil. J. Soil Sci. 31: 77–85.

    CAS  CrossRef  Google Scholar 

  • Rappoldt, C., 1992. Diffusion in aggregated soil. Doctoral thesis, Wagengingen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Rattray, E.A.S., Prosser, J.I., Glover, L.A., and Killham, K., 1992. Matric potential in relation to survival and activity of a genetically modified microbial inoculum in soil. Soil Biol., Biochem. 24: 421: –425.

    CrossRef  Google Scholar 

  • Reeve, M.J., and Carter, A.D., 1991. Water release characteristic. In Smith, and Mullins eds., Soil Analysis, Physical Methods. New York: Marcel Dekker, pp. 111–160.

    Google Scholar 

  • Rovira, A.D., and Greacen, E.L., 1957. The effect of aggregate disruption on the activity of microorganisms in the soil. Aust., J., Agr., Res. 8: 659–673.

    CrossRef  Google Scholar 

  • Rutherford, P.M., and Juma, N.G., 1992. Influence of texture on habitable pore space and bacterial‐protozoan populations in soil. Biol. Fertil. Soils 12: 221–227.

    CrossRef  Google Scholar 

  • Tan, Y., Bond, W.J., Rovira, A.D., Brisbane, P.G., and Griffin, D.M., 1991. Movement through soil of a biological control agent, Pseudomonas fluorescens. Soil Biol., Biochem. 23: 821–825.

    CrossRef  Google Scholar 

  • Wallace, H.R., 1958. Movement of eelworms. Anns., Appl. Biol. 46: 74–85.

    CrossRef  Google Scholar 

  • Worrall, V., and Roughley, R.J., 1991. Vertical movement of Rhizobium leguminosarum bv Trifolii in soil as influenced by soil water potential and water flow. Soil Bio. Biochem. 23: 485–486.

    CrossRef  Google Scholar 

  • Young, I.M., and Crawford, J.W., 1991. The fractal structure of soil aggregates: its measurement and interpretation. J. Soil Sci. 42: 187–192.

    CrossRef  Google Scholar 

  • Young, I.M., and Crawford, J.W., 1992. The analysis of fracture profiles of soil using fractal geometry. Aust. J. Soil Res. 30: 291–295.

    CrossRef  Google Scholar 

  • Young, I.M., and Crawford, J.W., 2004. Interactions and self‐organisation in the soil–microbe complex. Science 304: 1634–1637.

    CAS  CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Hossner, L.R., Yatsu, E., Young, I.M. (2008). Microhabitats. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_353

Download citation