Skip to main content

Computer Modeling

  • Reference work entry
  • First Online:
Encyclopedia of Soil Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bosatta, E., and Ågren, G.I., 1985. Theoretical analysis of decomposition of heterogeneous substrates. Soil Biol. Biochem., 17: 601–610.

    Article  CAS  Google Scholar 

  • Brusseau, M.L., and Rao, P.S.C., 1990. Modeling solute transport in structure soils: A review. Geoderma, 46: 169–192.

    Article  Google Scholar 

  • Elliott, E.T., and Cole, C.V., 1989. A perspective on agroecosystem science. Ecology, 70: 1597–1602.

    Article  Google Scholar 

  • Forrester, J.W., 1961. Industrial dynamics. Cambridge: MIT Press, 464 pp.

    Google Scholar 

  • Geleta, S.S.J., Sabbagh, J.F., Stone, R.L., Elliott, H.P., Mapp, D.J., Bernardo, and Watkins, K.B., 1994. Importance of soil and cropping systems in the development of regional water quality policies. J. Environ. Qual., 23: 36–42.

    Article  Google Scholar 

  • Ghadiri, H., and Rose, C.W., (eds.), 1992. 23Modeling Chemical Transport in Soils – Natural and Applied Contaminants. Boca Raton, FL: Lewis Publ., 217 pp.

    Google Scholar 

  • Hunt, H.W., Coleman, D.C., Cole, C.V., Ingham, R.E., Elliott, E.T., and Woods, L.E., 1984. Simulation model of a food web with bacteria, amoebae and nematodes in soil. In Klug, M.J., and Reddy, C.A., eds., Current Perspectives in Microbial Ecology. Washington, D.C: American Society for Microbiology, pp. 346–351.

    Google Scholar 

  • Hunt, H.W., Coleman, D.C., Ingham, E.R., Ingham, R.E., Elliott, E.T., Moore, J.C., Rose, S.L., Reid, C.P.P., and Morley, C.R., 1987. The detrital food web in a shortgrass prairie. Biol. Fert. Soils, 3: 57–68.

    Google Scholar 

  • Jenkinson, D.S., and Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci., 123: 298–305.

    Article  CAS  Google Scholar 

  • Loeppert, R.H., Schwab, P., and Goldberg, S. (eds.), 1995. Chemical Equilibrium and Reaction Models. SSSA Special Publication No. 42. Madison, WI: SSSA‐ASA, 422 pp.

    Google Scholar 

  • Martin, S., and Lavelle, P., 1992. A simulation model of vertical movements of an earthworm population (Millsonia anomala Omodeo, Megascolecidae) in an African savanna (Lamto, Ivory Coast). Soil Biol. Biochem., 25: 1419–1424.

    Article  Google Scholar 

  • McGill, W.B., Hunt, H.W., Woodmansee, R.G., and Reuss, J.O., 1981. PHOENIX, a model of the dynamics of carbon and nitrogen in grassland soil. In Clark, F.E., and Rosswall, T., eds., Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. (Stockholm), 33: 49–115.

    Google Scholar 

  • Moorhead, D.L., Freckman, D.W., Reynolds, J.F., and Whitford, W.G., 1987. A simulation model of soil nematode population dynamics: effect of moisture and temperature. Pedobiologia, 30: 361–372.

    Google Scholar 

  • Parton, W.J., Schimel, D.S., Cole, C.V., and Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc. Am. J., 51: 1173–1179.

    Article  CAS  Google Scholar 

  • Parton, W.J., Ojima, D.S., Cole, C.V., and Schimel, D.S., 1994. A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management. In Quantitative Modeling of Soil Forming Processes. SSSA Special Publication 39, Madison, WI, pp. 147–167.

    Google Scholar 

  • Paustian, K., 1994. Modelling soil biology and biogeochemical processes for sustainable agriculture research. In Pankhurst, C., Doube, B.M., Gupta, V.V.S.R., and Grace, P.R., eds., Management of Soil Biota in Sustainable Farming Systems. Melbourne: CSIRO Publ., pp. 182–196.

    Google Scholar 

  • Paustian, K., and Schnürer, J., 1987. Fungal growth response to carbon and nitrogen limitation: A theoretical model. Soil Biol. Biochem., 19: 613–620.

    Article  CAS  Google Scholar 

  • Paustian, K., Ågren, G.I., and Bosatta, E., 1996. Modeling litter quality effects on decomposition and soil organic matter dynamics. In Cadisch, G., and Giller, K.E., eds., Driven by Nature: Plant Litter Quality and Decomposition. UK: CAB International, pp. 313–336.

    Google Scholar 

  • Plant, R.E., and Stone, N.D., 1991. Knowledge‐Based Systems in Agriculture. New York: McGraw‐Hill, 364 pp.

    Google Scholar 

  • Ray, C., Boast, C.W., Ellsworth, T.R., and Valocchi, A.J., 1996. Simulation of the impact of agricultural management practices on chemical transport in macroporous soils. Trans. ASAE, 39: 1697–1707.

    Article  Google Scholar 

  • Reuss, J.O., and Johnson, D.W., 1986. Acid Deposition and the Acidification of Soils and Waters. Ecological Studies, Vol. 59. New York: Springer, 119 pp.

    Google Scholar 

  • Rutherford, P.M., and Juma, N.G., 1992. Simulation of protozoa‐induced mineralization of bacterial carbon and nitrogen. Can. J. Soil Sci., 72: 201–216.

    Article  CAS  Google Scholar 

  • Sardin, M., Schweich, D., Leij, F.J., and van Genuchten, M.Th., 1991. Modeling the nonequilibrium transport of linearly interacting solutes in porous media: a review. Water Resour. Res., 27: 2287–2307.

    Article  CAS  Google Scholar 

  • Sharma, K.D., Menenti, M., Huygen, J., and Vich, A., 1996. Modeling spatial sediment delivery in an arid region using thematic mapper data and GIS. Trans. ASAE, 39: 551–557.

    Article  Google Scholar 

  • Smith, J.U., Smith, P., and Addiscott, T.M., 1996. Quantitative methods to evaluate and compare soil organic matter (SOM) models. In Powlson, D.S., Smith, P., and Smith, J.U., eds., Evaluation of Soil Organic Matter Models: Using Existing Long‐term Data Sets. NATO ASI Series, Series I: Global Environmental Change, Vol. 38. Berlin: Springer, pp. 181–200.

    Chapter  Google Scholar 

  • Tim, S., 1996. Emerging technologies for hydrologic and water quality modeling research. Trans. ASAE, 39: 465–476.

    Article  Google Scholar 

  • VEMAP, 1995. Vegetation/Ecosystem modeling and analysis project (VEMAP): Comparing biogeography and biogeochemistry models in a continental‐scale study of terrestrial ecosystem responses to climate change and CO 2 doubling. Glob. Biogeochem. Cycles, 9: 407–437.

    Google Scholar 

  • de Willigen, P., 1991. Nitrogen turnover in the soil–crop system: comparison of fourteen simulation models. Fert. Res., 27: 141–149.

    Article  CAS  Google Scholar 

  • Zacharias, S., Heatwole, C.D., and Coakley, C.W., 1996. Robust quantitative techniques for validating pesticide transport models. Trans. ASAE, 39: 47–54.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Chesworth, W. et al. (2008). Computer Modeling. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_121

Download citation

Publish with us

Policies and ethics