Encyclopedia of Soil Science

2008 Edition
| Editors: Ward Chesworth

Computer Modeling

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • William R. Horwath
  • G. Almendros
  • Ward Chesworth
  • Paul R. Grossl
  • Donald L. Sparks
  • Otto Spaargaren
  • Rhodes W. Fairbridge
  • Arieh Singer
  • Hari Eswaran
  • Erika Micheli
  • Otto Spaargaren
  • P. M. Huang
  • Arieh Singer
  • Charles E. Weaver
  • B. K. G. Theng
  • Iain M. Young
  • Keith Paustian
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-3995-9_121

Background and definitions

Models can be broadly defined as abstractions and simplifications of “reality”, which we use to organize our understanding of the physical world. Accordingly, models can range from conceptual to diagrammatic to quantitative representations. Computer models are quantitative in nature, in which the phenomena of interest are represented by mathematical equations. The computer facilitates solution of the equations and is used to process information required by the model and to display and analyze results. In this section, the focus will be on computer models of dynamic systems, often referred to as simulation models.

Simulation modeling is a widely used technique in many disciplines within soil science. It provides a means for quantifying the behavior of a system and its changes through time and space. A system can be generally defined as a set of objects or components that act together to perform some “function” (Forrester, 1961). Thus, simulation modeling is...

This is a preview of subscription content, log in to check access

Bibliography

  1. Bosatta, E., and Ågren, G.I., 1985. Theoretical analysis of decomposition of heterogeneous substrates. Soil Biol. Biochem., 17: 601–610.CrossRefGoogle Scholar
  2. Brusseau, M.L., and Rao, P.S.C., 1990. Modeling solute transport in structure soils: A review. Geoderma, 46: 169–192.CrossRefGoogle Scholar
  3. Elliott, E.T., and Cole, C.V., 1989. A perspective on agroecosystem science. Ecology, 70: 1597–1602.CrossRefGoogle Scholar
  4. Forrester, J.W., 1961. Industrial dynamics. Cambridge: MIT Press, 464 pp.Google Scholar
  5. Geleta, S.S.J., Sabbagh, J.F., Stone, R.L., Elliott, H.P., Mapp, D.J., Bernardo, and Watkins, K.B., 1994. Importance of soil and cropping systems in the development of regional water quality policies. J. Environ. Qual., 23: 36–42.CrossRefGoogle Scholar
  6. Ghadiri, H., and Rose, C.W., (eds.), 1992. 23Modeling Chemical Transport in Soils – Natural and Applied Contaminants. Boca Raton, FL: Lewis Publ., 217 pp.Google Scholar
  7. Hunt, H.W., Coleman, D.C., Cole, C.V., Ingham, R.E., Elliott, E.T., and Woods, L.E., 1984. Simulation model of a food web with bacteria, amoebae and nematodes in soil. In Klug, M.J., and Reddy, C.A., eds., Current Perspectives in Microbial Ecology. Washington, D.C: American Society for Microbiology, pp. 346–351.Google Scholar
  8. Hunt, H.W., Coleman, D.C., Ingham, E.R., Ingham, R.E., Elliott, E.T., Moore, J.C., Rose, S.L., Reid, C.P.P., and Morley, C.R., 1987. The detrital food web in a shortgrass prairie. Biol. Fert. Soils, 3: 57–68.Google Scholar
  9. Jenkinson, D.S., and Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci., 123: 298–305.CrossRefGoogle Scholar
  10. Loeppert, R.H., Schwab, P., and Goldberg, S. (eds.), 1995. Chemical Equilibrium and Reaction Models. SSSA Special Publication No. 42. Madison, WI: SSSA‐ASA, 422 pp.Google Scholar
  11. Martin, S., and Lavelle, P., 1992. A simulation model of vertical movements of an earthworm population (Millsonia anomala Omodeo, Megascolecidae) in an African savanna (Lamto, Ivory Coast). Soil Biol. Biochem., 25: 1419–1424.CrossRefGoogle Scholar
  12. McGill, W.B., Hunt, H.W., Woodmansee, R.G., and Reuss, J.O., 1981. PHOENIX, a model of the dynamics of carbon and nitrogen in grassland soil. In Clark, F.E., and Rosswall, T., eds., Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts. Ecol. Bull. (Stockholm), 33: 49–115.Google Scholar
  13. Moorhead, D.L., Freckman, D.W., Reynolds, J.F., and Whitford, W.G., 1987. A simulation model of soil nematode population dynamics: effect of moisture and temperature. Pedobiologia, 30: 361–372.Google Scholar
  14. Parton, W.J., Schimel, D.S., Cole, C.V., and Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc. Am. J., 51: 1173–1179.CrossRefGoogle Scholar
  15. Parton, W.J., Ojima, D.S., Cole, C.V., and Schimel, D.S., 1994. A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management. In Quantitative Modeling of Soil Forming Processes. SSSA Special Publication 39, Madison, WI, pp. 147–167.Google Scholar
  16. Paustian, K., 1994. Modelling soil biology and biogeochemical processes for sustainable agriculture research. In Pankhurst, C., Doube, B.M., Gupta, V.V.S.R., and Grace, P.R., eds., Management of Soil Biota in Sustainable Farming Systems. Melbourne: CSIRO Publ., pp. 182–196.Google Scholar
  17. Paustian, K., and Schnürer, J., 1987. Fungal growth response to carbon and nitrogen limitation: A theoretical model. Soil Biol. Biochem., 19: 613–620.CrossRefGoogle Scholar
  18. Paustian, K., Ågren, G.I., and Bosatta, E., 1996. Modeling litter quality effects on decomposition and soil organic matter dynamics. In Cadisch, G., and Giller, K.E., eds., Driven by Nature: Plant Litter Quality and Decomposition. UK: CAB International, pp. 313–336.Google Scholar
  19. Plant, R.E., and Stone, N.D., 1991. Knowledge‐Based Systems in Agriculture. New York: McGraw‐Hill, 364 pp.Google Scholar
  20. Ray, C., Boast, C.W., Ellsworth, T.R., and Valocchi, A.J., 1996. Simulation of the impact of agricultural management practices on chemical transport in macroporous soils. Trans. ASAE, 39: 1697–1707.CrossRefGoogle Scholar
  21. Reuss, J.O., and Johnson, D.W., 1986. Acid Deposition and the Acidification of Soils and Waters. Ecological Studies, Vol. 59. New York: Springer, 119 pp.Google Scholar
  22. Rutherford, P.M., and Juma, N.G., 1992. Simulation of protozoa‐induced mineralization of bacterial carbon and nitrogen. Can. J. Soil Sci., 72: 201–216.CrossRefGoogle Scholar
  23. Sardin, M., Schweich, D., Leij, F.J., and van Genuchten, M.Th., 1991. Modeling the nonequilibrium transport of linearly interacting solutes in porous media: a review. Water Resour. Res., 27: 2287–2307.CrossRefGoogle Scholar
  24. Sharma, K.D., Menenti, M., Huygen, J., and Vich, A., 1996. Modeling spatial sediment delivery in an arid region using thematic mapper data and GIS. Trans. ASAE, 39: 551–557.CrossRefGoogle Scholar
  25. Smith, J.U., Smith, P., and Addiscott, T.M., 1996. Quantitative methods to evaluate and compare soil organic matter (SOM) models. In Powlson, D.S., Smith, P., and Smith, J.U., eds., Evaluation of Soil Organic Matter Models: Using Existing Long‐term Data Sets. NATO ASI Series, Series I: Global Environmental Change, Vol. 38. Berlin: Springer, pp. 181–200.CrossRefGoogle Scholar
  26. Tim, S., 1996. Emerging technologies for hydrologic and water quality modeling research. Trans. ASAE, 39: 465–476.CrossRefGoogle Scholar
  27. VEMAP, 1995. Vegetation/Ecosystem modeling and analysis project (VEMAP): Comparing biogeography and biogeochemistry models in a continental‐scale study of terrestrial ecosystem responses to climate change and CO 2 doubling. Glob. Biogeochem. Cycles, 9: 407–437.Google Scholar
  28. de Willigen, P., 1991. Nitrogen turnover in the soil–crop system: comparison of fourteen simulation models. Fert. Res., 27: 141–149.CrossRefGoogle Scholar
  29. Zacharias, S., Heatwole, C.D., and Coakley, C.W., 1996. Robust quantitative techniques for validating pesticide transport models. Trans. ASAE, 39: 47–54.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • William R. Horwath
  • G. Almendros
  • Ward Chesworth
  • Paul R. Grossl
  • Donald L. Sparks
  • Otto Spaargaren
  • Rhodes W. Fairbridge
  • Arieh Singer
  • Hari Eswaran
  • Erika Micheli
  • Otto Spaargaren
  • P. M. Huang
  • Arieh Singer
  • Charles E. Weaver
  • B. K. G. Theng
  • Iain M. Young
  • Keith Paustian

There are no affiliations available