Encyclopedia of Soil Science

2008 Edition
| Editors: Ward Chesworth

Clay Mineral Formation

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • William R. Horwath
  • G. Almendros
  • Ward Chesworth
  • Paul R. Grossl
  • Donald L. Sparks
  • Otto Spaargaren
  • Rhodes W. Fairbridge
  • Arieh Singer
  • Hari Eswaran
  • Erika Micheli
  • Otto Spaargaren
  • P. M. Huang
  • Arieh Singer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-3995-9_108

Clay is that size fraction of the soil that consists of particles of less than 2 μm equivalent spherical diameter. The minerals that usually predominate in the clay fraction are termed clay minerals or phyllosilicates (see  Clay minerals: silicates). Clay minerals are hydrous silicates or aluminosilicates, generally secondary, and they commonly form in nature by the alteration or weathering of primary minerals or by crystallization from solutions. The occurrence of clay minerals in soils is due to one of the following three major processes: inheritance, transformation or neoformation.

New techniques of analysis in the last 20 years, especially transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X‐ray microanalysis (EDS) have shown clay mineral formation in considerable detail (Banfield and Eggleton, 1990; Robert and Tessier, 1992; Banfield and Barker, 1994).

Inheritance

Clay minerals that form part of the parent materials of soils are passed...

This is a preview of subscription content, log in to check access

Bibliography

  1. Banfield, J.L., Barker, W., 1994. Direct observation of reactant‐product interfaces formed in natural weathering of exsolved, defective amphibole to smectite: Evidence for episodic, isovolumetric reactions involving structural inheritance. Geochim. Cosmochim. Acta, 58: 1419–1429.CrossRefGoogle Scholar
  2. Banfield, J.F., and Eggleton, R.A., 1990. Analytical transmission electron microscope studies of plagioclase, muscovite, and K‐feldspar weathering. Clays Clay Miner., 38: 77–89.CrossRefGoogle Scholar
  3. Barnhisel, R.I., and Bertsch, P.M., 1989. Chlorites and hydroxy‐interlayered vermiculite and smectite. In Dixon, J.B., and Weed, S.B., eds., Minerals in Soil Environments. Madison, WI: Soil Science Society of America, pp. 729–788.Google Scholar
  4. Barshad, J., 1966. The effect of a variation of precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. Proc. Int. Clay Conf. (Jerusalem), 1: 167–173.Google Scholar
  5. Chamley, H., 1989. Clay Sedimentology. Berlin: Springer, 623 pp.CrossRefGoogle Scholar
  6. Evans, L.J., 1992. Alteration products of the Earth's surface – the clay minerals. In Martini, I.P., and Chesworth, W., eds., Weathering, Soils and Paleosols. Amsterdam, Elsevier. pp. 107–125.CrossRefGoogle Scholar
  7. Gilkes, R.J., and Suddhiprakarn, A., and Armitage, T.M., 1980. Scanning electron microscope morphology of deeply weathered granite. Clays Clay Miner., 28: 29–34.CrossRefGoogle Scholar
  8. Hsu, P.H., 1989. Aluminum oxides and oxyhydroxides. In Dixon, J.B., and Weed, S.B., eds., Minerals in Soil Environments. Madison, WI: Soil Science Society of America, pp. 331–378.Google Scholar
  9. Jackson, M.L., 1968. Weathering of primary and secondary minerals in soils. Trans. 9th Int. Congr. Soil Sci., 4: 281–292.Google Scholar
  10. Keller, W.D., 1970. Environmental aspects of clay minerals. J. Sediment. Petrol., 40: 788–813.Google Scholar
  11. Langmuir, D., 1997. Aqueous Environmental Geochemistry. Upper Saddle River, NJ: Prentice-Hall, 600 pp.Google Scholar
  12. Lindsay, W.L., 2001. Chemical Equilibria in Soils. Caldwell, NJ: Blackburn Press, 449 pp.Google Scholar
  13. Millot, G., 1964. Geologie des Argiles, Alterations, Sedimentologie, Geochimie. Paris: Masson, 499 pp.Google Scholar
  14. Niederbudde, E.A., 1975. Veranderungen von Dreischicht‐Tonmineralien durch natives K in holozanen Lossboden Mitteldeutschlands und Niederbayersn. Z. Pfl. Dung. Bodenk, 2: 217–234.CrossRefGoogle Scholar
  15. Norrish, K., 1972. Factors in the weathering of mica to vermiculite. Proc. Int. Clay Conf. (Madrid), 1: 417–432.Google Scholar
  16. Robert, M., and Tessier, D., 1992. Incipient weathering: some new concepts on weathering, clay formation and organization. In Martini, I.P., and Chesworth, W., eds., Weathering, Soils and Paleosols. Amsterdam: Elsevier, pp. 71–105.CrossRefGoogle Scholar
  17. Singer, A., 1989. Illite in the hot aridic soil environment. Soil Sci., 147: 126–133.CrossRefGoogle Scholar
  18. Singer, A., and Norrish, K., 1974. Pedogenic palygorskite occurrences in Australia. Am. Mineral., 59: 508–517.Google Scholar
  19. Tazaki, K., and Fyfe, W.S., 1987. Formation of primitive clay precursors on K‐feldspar under extreme leaching conditions. Proc. Int. Clay Conf. (Denver), 53–58.Google Scholar
  20. Velbel, M.A., 1983. A dissolution‐reprecipitation mechanism for the pseudomorphous replacement plagioclase feldspar by clay minerals during weathering. Sci. Geol. Mem., 71: 139–147.Google Scholar
  21. Weaver, C.E., 1989. Clays, Muds and Shales. Amsterdam: Elsevier, 819 pp.Google Scholar
  22. Yaalon, D.H., Nathan, Y., Koyumdjisky, H., and Dan, J., 1966. Weathering and catenary differentiation of clay minerals in soils on various parent materials in Israel. Proc. Int. Clay Conf. (Jerusalem), 1: 187–198.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • William R. Horwath
  • G. Almendros
  • Ward Chesworth
  • Paul R. Grossl
  • Donald L. Sparks
  • Otto Spaargaren
  • Rhodes W. Fairbridge
  • Arieh Singer
  • Hari Eswaran
  • Erika Micheli
  • Otto Spaargaren
  • P. M. Huang
  • Arieh Singer

There are no affiliations available