Encyclopedia of Soil Science

2008 Edition
| Editors: Ward Chesworth

Clay Mineral Alteration in Soils

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • William R. Horwath
  • G. Almendros
  • Ward Chesworth
  • Paul R. Grossl
  • Donald L. Sparks
  • Otto Spaargaren
  • Rhodes W. Fairbridge
  • Arieh Singer
  • Hari Eswaran
  • Erika Micheli
  • Otto Spaargaren
  • P. M. Huang
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-3995-9_107

Minerals, organic components, microbial organisms, soil fauna, plants, and aqueous solutions interact in the pedosphere in biogeochemical reactions collectively referred to as weathering. The full complexity of the interactions, especially important in the rhizosphere, and how the interactions relate to important aspects of soil science such as pedogenesis, mineral nutrition, and environmental protection, remain partly obscure and in need of continued research. To facilitate the elucidation of the complexity, the alternative reactions are divided into abiotic and biotic, a convenient though somewhat arbitrary division of the whole soil system.

Abiotic weathering environments

Weathering of soil minerals under earth surface conditions is controlled by surface reactions. The factors affecting the surface reactions of minerals include: (1) the activities of proton and inorganic and organic ligands, (2) the population of surface complexes with H + and OH , and other ligands, (3) ionic...

This is a preview of subscription content, log in to check access

Bibliography

  1. Amrhein, C., and Suarez, D.L., 1988. The use of a surface complexation model to describe the kinetics of ligand‐promoted dissolution of anorthite. Geochim. Cosmochim. Acta., 52: 2785–2793.CrossRefGoogle Scholar
  2. Aristovskaya, T.V., and Kutuzova, R.S., 1968. Microbial factors in the extraction of silicon from slightly‐soluble natural compounds. Sov. Soil Sci., 12: 1653–1659.Google Scholar
  3. Aristovskaya, T.V., Daragan, A.Y., and Kutuzova, R.S., 1969. Microbial factors in the movement of some mineral elements in the soil. Sov. Soil Sci., 5: 538–546.Google Scholar
  4. Azcon, R., Barea, J.M., and Hayman, D.S., 1976. Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol. Biochem., 8: 135–138.CrossRefGoogle Scholar
  5. Baker, W.E., 1973. The role of humic acids from Tasmanian podzol soils in mineral degradation and metal mobilization. Geochim. Cosmochim. Acta, 37: 269–281.CrossRefGoogle Scholar
  6. Berner, R.A., and Holdren, G.R., Jr., 1979. Mechanism of feldspar weathering. II. Observations of feldspars from soils. Geochim. Cosmochim. Acta, 43: 1173–1186.CrossRefGoogle Scholar
  7. Berthelin, J., 1982. Processes microbiens intervenant dans les sols hydromorphes en regions tempérées. Incidence sur la pédogenese. Pedologie, 32: 313–328.Google Scholar
  8. Berthelin, J., 1983. Microbial weathering processes. In Krumbein W.E., ed., Microbial Geochemistry. Oxford: Blackwell, pp. 223–263.Google Scholar
  9. Berthelin, J., and Belgy, G., 1979. Microbial degradation of phyllosilicates during simulated podzolization. Geoderma, 21: 297–310.CrossRefGoogle Scholar
  10. Berthelin, J., and Leyval, C., 1982. Ability of symbiotic and nonsymbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant Soil, 68: 369–377.CrossRefGoogle Scholar
  11. Berthelin, J., and Munier‐Lamy, C., 1983. Microbial mobilization and preconcentration of uranium from various rock materials by fungi. Ecol. Bull., 35: 395–401.Google Scholar
  12. Beverage, T.J., 1989. Role of cellular design in bacterial metal accumulation and mineralization. Ann. Rev. Microbiol., 43: 147–171.CrossRefGoogle Scholar
  13. Bloom, P.R., and Erich, M.S., 1987. Effect of solution composition on the rate and mechanism of gibbsite dissolution in acid solutions. Soil Sci. Soc. Am. J., 51: 1131–1136.CrossRefGoogle Scholar
  14. Bloom, P.R., and Nater, E.A., 1991. Kinetics of dissolution of oxide and primary silicate minerals. In Sparks, D.L., and Suarez, D.L., eds., Rates of Soil Chemical Process. Madison, WI: SSSA Special Publication 27. pp. 151–190.Google Scholar
  15. Browne, B.A., and Driscoll, C.T., 1992. Soluble aluminum silicates: stoichiometry, stability, and implications for environmental geochemistry. Science, 256: 1667.CrossRefGoogle Scholar
  16. Bruckert, S., 1970. Influence des composes organiques solubles sur la pédologénese en millieu acide. Ann. Agron., 21: 421–452.Google Scholar
  17. Cloos, P., Badot, C., and Herbillon, A., 1981. Interlayer formation of humin in smectites. Nature (London), 289: 391–393.CrossRefGoogle Scholar
  18. Dacey, P.W., Wakerley, D.S., and Le Roux, N.W., 1981. The Biodegradation of Rocks and Minerals with Particular Reference to Silicate Minerals: A Literature Survey. Stevenage, UK: Warren Spring Laboratory.Google Scholar
  19. Demolon, A., and Barbier, G., 1929. Conditions de formation et constitution du complexe argilo‐humique des sols. C. R. Acad. Sci. Paris, 188: 654–656.Google Scholar
  20. Dixon, J.B., and Weed, S.B. (eds.), 1989. Minerals in Soil Environments, 2nd edn. Madison, WI: Soil Science Society of America, 1244 pp.Google Scholar
  21. Eckhardt, F.E.W., 1979. Uber die Einwirkung heterotropher Mikroorganismen auf die Zerstzung silikalischer Minerale. Z. Planzenernaehr. Bodenkd., 142: 434–445.CrossRefGoogle Scholar
  22. Emerson, W.W., Foster, R.C., and Oades, J.M., 1986. Organo‐mineral complexes in relation to soil aggregation and structure. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Soil Science Society of America, Madison, WI: pp. 521–548.Google Scholar
  23. Evans, L.T., and Russell, E.W., 1959. The adsorption of humic and fulvic acids by clays. J. Soil Sci., 10: 119–132.CrossRefGoogle Scholar
  24. Farmer, V.C., and Fraser, A.R., 1978. Synthetic imogolite, a tubular hydroxy‐aluminium silicate. In Mortland, M.M., and Farmer, V.C., eds., Proc. 6th Int. Clav Conf. 1978, Oxford. Amsterdam: Elsevier, pp. 457–553.Google Scholar
  25. Henderson, M.E.K., and Duff, R.B., 1963. The release of metallic and silicate ions from minerals, rocks, and soils by fungal activity. J. Soil Sci., 14: 236–246.CrossRefGoogle Scholar
  26. Henin, S., Pedro, G., and Robert, M., 1968. Considérations sur les nations de stabilite et d'instabilite des minéraux en fonction des conditions du millieu; essais de classification des “systemes d'agression”. Trans. Int. Congr. Soil Sci. 9th, 3: 79–90.Google Scholar
  27. Holdren, G.R., Jr., and Speyer, P.M., 1985. Reaction rate‐surface area relationships during the early stages of weathering – 1. Initial observations. Geochim. Cosmochim. Acta, 49: 675–681.CrossRefGoogle Scholar
  28. Horne, R.A., 1978. The Chemistry of Our Environment. New York: Wiley, 869 pp.Google Scholar
  29. Huang, P.M., 1980. Adsorption processes in soils. In Hutzinger, O., ed., Handbook of Environmental Chemistry, Vol. 2. Part A. Reactions and Processes. New York: Springer, pp. 47–59.Google Scholar
  30. Huang, P.M., 1990. Role of soil minerals in transformations of natural organics and xenobiotics in soil. In Bollag, J.‐M., and Stotzky, G., eds., Soil Biochemistry, Vol. 6. New York: Marcel Dekker, pp. 29–115.Google Scholar
  31. Huang, P.M., 2002. Foreseeable impacts of soil mineral–organic component–microorganism interactions on society: Ecosystem health. In Violante, A., Huang, P.M., Bollag, J.‐M., and Gianfreda, L., eds., Soil Mineral–Organic Matter–Microorganism Interactions and Ecosystem Health: A. Dynamics, Mobility and Transformation of Pollutants and Nutrients. Amsterdam: Elsevier, pp. 1–36.CrossRefGoogle Scholar
  32. Huang, P.M., 2005. Chemistry of potassium in soils. In Tabatabai, M.A., and Sparks, D.L., eds., Chemical Processes in Soils. SSSA Book Series No. 8. Soil Science Society of America, Madison, WI: pp. 227–292.Google Scholar
  33. Huang, P.M., and Schnitzer, M. (eds.), 1986. Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Madison, WI: Soil Science Society of America, 606 pp.Google Scholar
  34. Huang, P.M., Wang, M.K., Kämpf, N., and Schulze, D.G., 2002. Aluminum hydroxides. In Dixon, J.B., and Schulze, D.G., eds., Soil Mineralogy with Environmental Applications. SSSA Book Series: 7. Madison, WI: Soil Science Society of America, pp. 261–289.Google Scholar
  35. Inoue, K., and Huang, P.M., 1984. Influence of citric acid on natural formation of imogolite. Nature (London), 308: 58–60.CrossRefGoogle Scholar
  36. Ivarson, K.C., Ross, G.J., and Miles, M.M., 1978. Alterations of micas and feldspars during microbial formation of basic ferric sulfate in the laboratory. Soil Sci. Soc. Am. J., 42: 518–524.CrossRefGoogle Scholar
  37. Jackson, M.L., 1964. Chemical composition of soils. In Bear, F.E., ed., Chemistry of the Soil, 2nd edn. New York: Reinhold Publishing Corp., pp. 71–141.Google Scholar
  38. Keller, W.D., and Frederickson, O., 1952. Role of plants and colloidal acids in the mechanisms of weathering. Am. J. Sci., 250: 594–603.CrossRefGoogle Scholar
  39. Kim, J., Dong, H., Seabaugh, J., Newell, S., and Eberl, D., 2004. Role of microbes in the smectite‐to‐illite reaction. Science, 303: 830–832.CrossRefGoogle Scholar
  40. Kitano, Y., and Hood, D.W., 1965. The influence of organic material on the polymorphic crystallization of calcium carbonate. Geochim. Cosmochim. Acta, 29: 29–41.CrossRefGoogle Scholar
  41. Krishnamurti, G.S.R., and Huang, P.M., 1991. Kinetics of Fe(II) oxygenation and the nature of hydrolytic products as influenced by ligands. In Farmer, V.C., and Tardy, Y., eds., Proc. IX Int. Clay Conf. (Strassbourg. France). Publié avec le concours de 1'Université Louis Pasteur et du Center National de la Recherche Scientifique, pp. 195–204.Google Scholar
  42. Kutuzova, R.S., 1973. Possible ways of mineral weathering in alkaline soils. Sov. Soil Sci., 5: 111–116.Google Scholar
  43. Leyval, C., and Berthelin, J., 1983. Effects rhizosphériques de plantes indicatrices de grands types de pédogenèse sur quelques groupes bacteriens modifiant 1'état des minéraux. Rev. Ecol., Biol. Sol., 20: 191–206.Google Scholar
  44. Lou, G., and Huang, P.M., 1988. Hydroxy‐aluminosilicate interlayers in montmorillonite: implications for acidic environments. Nature (London), 335: 625–627CrossRefGoogle Scholar
  45. Lou, G., and Huang, P.M., 1993. Silication of hydroxy‐Al interlayers in smectite. Clays Clay Miner., 41: 38–44.CrossRefGoogle Scholar
  46. Louw, H.A., and Webley, D.M., 1959. The bacteriology of the root region of the oat plant grown under controlled pot culture conditions. J. Appl. Bacterial., 22: 216–226.CrossRefGoogle Scholar
  47. Lynch, J.M., 1983. Soil Biotechnology. Microbiological Factors in Crop Productivity. Oxford: Blackwell, 191 pp.Google Scholar
  48. Lynch, J.M. (ed.), 1990. The Rhizosohere. New York: Wiley, 458 pp.Google Scholar
  49. Martin, J.P., and Haider, K., 1986. Influence of mineral colloids on turnover rates of soil organic carbon. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. Madison, WI: Soil Science Society of America, pp. 283–304.Google Scholar
  50. Martin, P.M., and Rodriguez, P., 1969. Interlamellar adsorption of a black‐earth humic acid on Na‐montmorillonite. Z. Pflanzenernaehr. Dueng. Bodenk., 124: 52–57.CrossRefGoogle Scholar
  51. McBride, M.B., 1989. Surface chemistry of soil minerals. In Dixon, J.B., and Weed, S.B., eds., Minerals in Soil Environments, 2nd edn. Madison, WI: Soil Science Society of America, pp. 35–88.Google Scholar
  52. Oades, J.M., 1989. An introduction to organic matter in mineral soils. In Dixon, J.B., and Weed, S.B., eds., Minerals in Soil Environments. Madison, WI: Soil Science Society of America, pp. 89–159.Google Scholar
  53. Packer, A., and Dhillon, H.S., 1968. Reactions of aluminum hydrate powders with aqueous sodium hydroxide solution. Chem. Ind. (London), 1806–1807.Google Scholar
  54. Pezerat, H., and Vallet, M., 1973. Formation de polymere insere dans les couches interfoliaires de phyllites gonflantes. In Serratosa, J.M., ed., Proc. Int. Clav Conf. (Madrid. Spain) 1972. Madrid: Division de Ciencias, C.S.I.C, pp. 683–691.Google Scholar
  55. Polynov, B.B., 1945. Premiers stades de la formation des sols sur roches massives cristallines. Trad. Pochvovedenie, 7: 327–338.Google Scholar
  56. Pulfer, K., Schindler, P.W., Westall, J.C., and Grever, R., 1984. Kinetics and mechanism of dissolution of bayerite (γ‐Al 2O 3) in HNO 3‐HF solutions at 298.2° K. J. Colloid Interface Sci., 101: 554–564.CrossRefGoogle Scholar
  57. Rades‐Rohkohl, E., Hirsch, P., and Franzle, O., 1979. Neutron activation analysis for the demonstration of amphibolite rock weathering activity of a yeast. Appl. Environ. Microbiol., 38: 1061–1068.Google Scholar
  58. Robert, M., and Berthelin, J., 1986. Role of biological and biochemical factors in soil mineral weathering. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Madison, WI: Soil Science Society of America, pp. 453–495.Google Scholar
  59. Schnitzer, M., 1991. Soil organic matter – the next 75 years. Soil Sci., 151: 4.CrossRefGoogle Scholar
  60. Schnitzer, M., 1995. Organic‐inorganic interactions in soils and their effects on soil quality. In Huang, P.M., Berthelin, J., Bollag, J.‐M., McGill, W.B., and Page, A.L., eds., Environmental Impact of Soil Component Interactions: Natural and Anthropogenic Organics. Chelsea, MI: Lewis Publishers, pp. 3–19.Google Scholar
  61. Schnitzer, M., and Kodama, H., 1966. Montmorillonite: Effect of pH on its adsorption of a soil humic compound, Science, 153: 70–71.CrossRefGoogle Scholar
  62. Schwertmann, U., Kodama, H., and Fisher, W.R., 1986. Mutual interactions between organics and iron oxides. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Madison, WI: Soil Science Society of America, pp. 223–250.Google Scholar
  63. Scotford, R.F., and Glastonbury, J.R., 1972. The effect of concentration on the rates of dissolution of gibbsite and boehmite. Can. J. Chem. Eng., 50: 754–759.CrossRefGoogle Scholar
  64. Singer, A., and Huang, P.M., 1993. Effect of humic acid on aluminum interlayering in montmorillonite. Soil Sci. Soc. Am. J., 57: 271–279.CrossRefGoogle Scholar
  65. Sprengel, C., 1826. Uber Pflazenhumus, Humussäure und Humussäure‐Salze. Kastner's Arch. Ges. Naturlehre., 8: 145–220.Google Scholar
  66. Spyridakis, D.E., Chesters, G., and Wilde, S.A., 1967. Kaolinization of biotite as a result of coniferous and deciduous seedling growth. Soil Sci. Soc. Am. Proc., 31: 203–210.CrossRefGoogle Scholar
  67. Stevenson, F.J., 1994. Humus Chemistry: Genesis. Composition. Reactions. New York: Wiley‐Interscience, 496 pp.Google Scholar
  68. Stone, A.T., 1986. Adsorption of organic reductants and subsequent electron transfer on metal oxide surfaces. In Davis, J.A., and Hayes, K.F., eds., Geochemical Processes at Mineral Surfaces. ACS Symposium Series 323. Washington, DC: ACS, pp. 446–461.Google Scholar
  69. Stumm, W.E., and Furrer, G., 1987. The dissolution of oxides and aluminum silicates; examples of surface‐coordination‐controlled kinetics. In Stumm, W.E., ed., Aquatic Surface Chemistry. New York: Wiley, pp. 197–219.Google Scholar
  70. Stumm, W.E., and Morgan, J.J., 1996. Aquatic Chemistry, 3rd edn. New York: Wiley, 1022 pp.Google Scholar
  71. Wada, S.‐I., and Wada, K., 1980. Formation, composition and structure of hydroxy‐aluminosilicate ions. J. Soil Sci., 21: 457–467.CrossRefGoogle Scholar
  72. Wang, M.C., and Huang, P.M., 1986. Humic macromolecule interlayering in nontronite through interaction with phenol monomers. Nature (London), 323: 529–531CrossRefGoogle Scholar
  73. Wilson, M.J., 2004. Weathering of the primary rock‐forming minerals: processes, products and rates. Clay Minerals, 39: 233–266.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Ward Chesworth
  • Marta Camps Arbestain
  • Felipe Macías
  • Otto Spaargaren
  • Otto Spaargaren
  • Y. Mualem
  • H. J. Morel‐Seytoux
  • William R. Horwath
  • G. Almendros
  • Ward Chesworth
  • Paul R. Grossl
  • Donald L. Sparks
  • Otto Spaargaren
  • Rhodes W. Fairbridge
  • Arieh Singer
  • Hari Eswaran
  • Erika Micheli
  • Otto Spaargaren
  • P. M. Huang

There are no affiliations available