Skip to main content

Clay Mineral Alteration in Soils

  • Reference work entry
  • First Online:
Encyclopedia of Soil Science

Minerals, organic components, microbial organisms, soil fauna, plants, and aqueous solutions interact in the pedosphere in biogeochemical reactions collectively referred to as weathering. The full complexity of the interactions, especially important in the rhizosphere, and how the interactions relate to important aspects of soil science such as pedogenesis, mineral nutrition, and environmental protection, remain partly obscure and in need of continued research. To facilitate the elucidation of the complexity, the alternative reactions are divided into abiotic and biotic, a convenient though somewhat arbitrary division of the whole soil system.

Abiotic weathering environments

Weathering of soil minerals under earth surface conditions is controlled by surface reactions. The factors affecting the surface reactions of minerals include: (1) the activities of proton and inorganic and organic ligands, (2) the population of surface complexes with H + and OH , and other ligands, (3) ionic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Amrhein, C., and Suarez, D.L., 1988. The use of a surface complexation model to describe the kinetics of ligand‐promoted dissolution of anorthite. Geochim. Cosmochim. Acta., 52: 2785–2793.

    Article  CAS  Google Scholar 

  • Aristovskaya, T.V., and Kutuzova, R.S., 1968. Microbial factors in the extraction of silicon from slightly‐soluble natural compounds. Sov. Soil Sci., 12: 1653–1659.

    Google Scholar 

  • Aristovskaya, T.V., Daragan, A.Y., and Kutuzova, R.S., 1969. Microbial factors in the movement of some mineral elements in the soil. Sov. Soil Sci., 5: 538–546.

    Google Scholar 

  • Azcon, R., Barea, J.M., and Hayman, D.S., 1976. Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol. Biochem., 8: 135–138.

    Article  CAS  Google Scholar 

  • Baker, W.E., 1973. The role of humic acids from Tasmanian podzol soils in mineral degradation and metal mobilization. Geochim. Cosmochim. Acta, 37: 269–281.

    Article  CAS  Google Scholar 

  • Berner, R.A., and Holdren, G.R., Jr., 1979. Mechanism of feldspar weathering. II. Observations of feldspars from soils. Geochim. Cosmochim. Acta, 43: 1173–1186.

    Article  CAS  Google Scholar 

  • Berthelin, J., 1982. Processes microbiens intervenant dans les sols hydromorphes en regions tempérées. Incidence sur la pédogenese. Pedologie, 32: 313–328.

    CAS  Google Scholar 

  • Berthelin, J., 1983. Microbial weathering processes. In Krumbein W.E., ed., Microbial Geochemistry. Oxford: Blackwell, pp. 223–263.

    Google Scholar 

  • Berthelin, J., and Belgy, G., 1979. Microbial degradation of phyllosilicates during simulated podzolization. Geoderma, 21: 297–310.

    Article  CAS  Google Scholar 

  • Berthelin, J., and Leyval, C., 1982. Ability of symbiotic and nonsymbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant Soil, 68: 369–377.

    Article  CAS  Google Scholar 

  • Berthelin, J., and Munier‐Lamy, C., 1983. Microbial mobilization and preconcentration of uranium from various rock materials by fungi. Ecol. Bull., 35: 395–401.

    CAS  Google Scholar 

  • Beverage, T.J., 1989. Role of cellular design in bacterial metal accumulation and mineralization. Ann. Rev. Microbiol., 43: 147–171.

    Article  Google Scholar 

  • Bloom, P.R., and Erich, M.S., 1987. Effect of solution composition on the rate and mechanism of gibbsite dissolution in acid solutions. Soil Sci. Soc. Am. J., 51: 1131–1136.

    Article  CAS  Google Scholar 

  • Bloom, P.R., and Nater, E.A., 1991. Kinetics of dissolution of oxide and primary silicate minerals. In Sparks, D.L., and Suarez, D.L., eds., Rates of Soil Chemical Process. Madison, WI: SSSA Special Publication 27. pp. 151–190.

    Google Scholar 

  • Browne, B.A., and Driscoll, C.T., 1992. Soluble aluminum silicates: stoichiometry, stability, and implications for environmental geochemistry. Science, 256: 1667.

    Article  CAS  Google Scholar 

  • Bruckert, S., 1970. Influence des composes organiques solubles sur la pédologénese en millieu acide. Ann. Agron., 21: 421–452.

    CAS  Google Scholar 

  • Cloos, P., Badot, C., and Herbillon, A., 1981. Interlayer formation of humin in smectites. Nature (London), 289: 391–393.

    Article  CAS  Google Scholar 

  • Dacey, P.W., Wakerley, D.S., and Le Roux, N.W., 1981. The Biodegradation of Rocks and Minerals with Particular Reference to Silicate Minerals: A Literature Survey. Stevenage, UK: Warren Spring Laboratory.

    Google Scholar 

  • Demolon, A., and Barbier, G., 1929. Conditions de formation et constitution du complexe argilo‐humique des sols. C. R. Acad. Sci. Paris, 188: 654–656.

    CAS  Google Scholar 

  • Dixon, J.B., and Weed, S.B. (eds.), 1989. Minerals in Soil Environments, 2nd edn. Madison, WI: Soil Science Society of America, 1244 pp.

    Google Scholar 

  • Eckhardt, F.E.W., 1979. Uber die Einwirkung heterotropher Mikroorganismen auf die Zerstzung silikalischer Minerale. Z. Planzenernaehr. Bodenkd., 142: 434–445.

    Article  CAS  Google Scholar 

  • Emerson, W.W., Foster, R.C., and Oades, J.M., 1986. Organo‐mineral complexes in relation to soil aggregation and structure. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Soil Science Society of America, Madison, WI: pp. 521–548.

    Google Scholar 

  • Evans, L.T., and Russell, E.W., 1959. The adsorption of humic and fulvic acids by clays. J. Soil Sci., 10: 119–132.

    Article  CAS  Google Scholar 

  • Farmer, V.C., and Fraser, A.R., 1978. Synthetic imogolite, a tubular hydroxy‐aluminium silicate. In Mortland, M.M., and Farmer, V.C., eds., Proc. 6th Int. Clav Conf. 1978, Oxford. Amsterdam: Elsevier, pp. 457–553.

    Google Scholar 

  • Henderson, M.E.K., and Duff, R.B., 1963. The release of metallic and silicate ions from minerals, rocks, and soils by fungal activity. J. Soil Sci., 14: 236–246.

    Article  CAS  Google Scholar 

  • Henin, S., Pedro, G., and Robert, M., 1968. Considérations sur les nations de stabilite et d'instabilite des minéraux en fonction des conditions du millieu; essais de classification des “systemes d'agression”. Trans. Int. Congr. Soil Sci. 9th, 3: 79–90.

    CAS  Google Scholar 

  • Holdren, G.R., Jr., and Speyer, P.M., 1985. Reaction rate‐surface area relationships during the early stages of weathering – 1. Initial observations. Geochim. Cosmochim. Acta, 49: 675–681.

    Article  CAS  Google Scholar 

  • Horne, R.A., 1978. The Chemistry of Our Environment. New York: Wiley, 869 pp.

    Google Scholar 

  • Huang, P.M., 1980. Adsorption processes in soils. In Hutzinger, O., ed., Handbook of Environmental Chemistry, Vol. 2. Part A. Reactions and Processes. New York: Springer, pp. 47–59.

    Google Scholar 

  • Huang, P.M., 1990. Role of soil minerals in transformations of natural organics and xenobiotics in soil. In Bollag, J.‐M., and Stotzky, G., eds., Soil Biochemistry, Vol. 6. New York: Marcel Dekker, pp. 29–115.

    Google Scholar 

  • Huang, P.M., 2002. Foreseeable impacts of soil mineral–organic component–microorganism interactions on society: Ecosystem health. In Violante, A., Huang, P.M., Bollag, J.‐M., and Gianfreda, L., eds., Soil Mineral–Organic Matter–Microorganism Interactions and Ecosystem Health: A. Dynamics, Mobility and Transformation of Pollutants and Nutrients. Amsterdam: Elsevier, pp. 1–36.

    Chapter  Google Scholar 

  • Huang, P.M., 2005. Chemistry of potassium in soils. In Tabatabai, M.A., and Sparks, D.L., eds., Chemical Processes in Soils. SSSA Book Series No. 8. Soil Science Society of America, Madison, WI: pp. 227–292.

    Google Scholar 

  • Huang, P.M., and Schnitzer, M. (eds.), 1986. Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Madison, WI: Soil Science Society of America, 606 pp.

    Google Scholar 

  • Huang, P.M., Wang, M.K., Kämpf, N., and Schulze, D.G., 2002. Aluminum hydroxides. In Dixon, J.B., and Schulze, D.G., eds., Soil Mineralogy with Environmental Applications. SSSA Book Series: 7. Madison, WI: Soil Science Society of America, pp. 261–289.

    Google Scholar 

  • Inoue, K., and Huang, P.M., 1984. Influence of citric acid on natural formation of imogolite. Nature (London), 308: 58–60.

    Article  CAS  Google Scholar 

  • Ivarson, K.C., Ross, G.J., and Miles, M.M., 1978. Alterations of micas and feldspars during microbial formation of basic ferric sulfate in the laboratory. Soil Sci. Soc. Am. J., 42: 518–524.

    Article  CAS  Google Scholar 

  • Jackson, M.L., 1964. Chemical composition of soils. In Bear, F.E., ed., Chemistry of the Soil, 2nd edn. New York: Reinhold Publishing Corp., pp. 71–141.

    Google Scholar 

  • Keller, W.D., and Frederickson, O., 1952. Role of plants and colloidal acids in the mechanisms of weathering. Am. J. Sci., 250: 594–603.

    Article  CAS  Google Scholar 

  • Kim, J., Dong, H., Seabaugh, J., Newell, S., and Eberl, D., 2004. Role of microbes in the smectite‐to‐illite reaction. Science, 303: 830–832.

    Article  CAS  Google Scholar 

  • Kitano, Y., and Hood, D.W., 1965. The influence of organic material on the polymorphic crystallization of calcium carbonate. Geochim. Cosmochim. Acta, 29: 29–41.

    Article  CAS  Google Scholar 

  • Krishnamurti, G.S.R., and Huang, P.M., 1991. Kinetics of Fe(II) oxygenation and the nature of hydrolytic products as influenced by ligands. In Farmer, V.C., and Tardy, Y., eds., Proc. IX Int. Clay Conf. (Strassbourg. France). Publié avec le concours de 1'Université Louis Pasteur et du Center National de la Recherche Scientifique, pp. 195–204.

    Google Scholar 

  • Kutuzova, R.S., 1973. Possible ways of mineral weathering in alkaline soils. Sov. Soil Sci., 5: 111–116.

    Google Scholar 

  • Leyval, C., and Berthelin, J., 1983. Effects rhizosphériques de plantes indicatrices de grands types de pédogenèse sur quelques groupes bacteriens modifiant 1'état des minéraux. Rev. Ecol., Biol. Sol., 20: 191–206.

    Google Scholar 

  • Lou, G., and Huang, P.M., 1988. Hydroxy‐aluminosilicate interlayers in montmorillonite: implications for acidic environments. Nature (London), 335: 625–627

    Article  CAS  Google Scholar 

  • Lou, G., and Huang, P.M., 1993. Silication of hydroxy‐Al interlayers in smectite. Clays Clay Miner., 41: 38–44.

    Article  CAS  Google Scholar 

  • Louw, H.A., and Webley, D.M., 1959. The bacteriology of the root region of the oat plant grown under controlled pot culture conditions. J. Appl. Bacterial., 22: 216–226.

    Article  CAS  Google Scholar 

  • Lynch, J.M., 1983. Soil Biotechnology. Microbiological Factors in Crop Productivity. Oxford: Blackwell, 191 pp.

    Google Scholar 

  • Lynch, J.M. (ed.), 1990. The Rhizosohere. New York: Wiley, 458 pp.

    Google Scholar 

  • Martin, J.P., and Haider, K., 1986. Influence of mineral colloids on turnover rates of soil organic carbon. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. Madison, WI: Soil Science Society of America, pp. 283–304.

    Google Scholar 

  • Martin, P.M., and Rodriguez, P., 1969. Interlamellar adsorption of a black‐earth humic acid on Na‐montmorillonite. Z. Pflanzenernaehr. Dueng. Bodenk., 124: 52–57.

    Article  Google Scholar 

  • McBride, M.B., 1989. Surface chemistry of soil minerals. In Dixon, J.B., and Weed, S.B., eds., Minerals in Soil Environments, 2nd edn. Madison, WI: Soil Science Society of America, pp. 35–88.

    Google Scholar 

  • Oades, J.M., 1989. An introduction to organic matter in mineral soils. In Dixon, J.B., and Weed, S.B., eds., Minerals in Soil Environments. Madison, WI: Soil Science Society of America, pp. 89–159.

    Google Scholar 

  • Packer, A., and Dhillon, H.S., 1968. Reactions of aluminum hydrate powders with aqueous sodium hydroxide solution. Chem. Ind. (London), 1806–1807.

    Google Scholar 

  • Pezerat, H., and Vallet, M., 1973. Formation de polymere insere dans les couches interfoliaires de phyllites gonflantes. In Serratosa, J.M., ed., Proc. Int. Clav Conf. (Madrid. Spain) 1972. Madrid: Division de Ciencias, C.S.I.C, pp. 683–691.

    Google Scholar 

  • Polynov, B.B., 1945. Premiers stades de la formation des sols sur roches massives cristallines. Trad. Pochvovedenie, 7: 327–338.

    Google Scholar 

  • Pulfer, K., Schindler, P.W., Westall, J.C., and Grever, R., 1984. Kinetics and mechanism of dissolution of bayerite (γ‐Al 2O 3) in HNO 3‐HF solutions at 298.2° K. J. Colloid Interface Sci., 101: 554–564.

    Article  CAS  Google Scholar 

  • Rades‐Rohkohl, E., Hirsch, P., and Franzle, O., 1979. Neutron activation analysis for the demonstration of amphibolite rock weathering activity of a yeast. Appl. Environ. Microbiol., 38: 1061–1068.

    Google Scholar 

  • Robert, M., and Berthelin, J., 1986. Role of biological and biochemical factors in soil mineral weathering. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Madison, WI: Soil Science Society of America, pp. 453–495.

    Google Scholar 

  • Schnitzer, M., 1991. Soil organic matter – the next 75 years. Soil Sci., 151: 4.

    Article  Google Scholar 

  • Schnitzer, M., 1995. Organic‐inorganic interactions in soils and their effects on soil quality. In Huang, P.M., Berthelin, J., Bollag, J.‐M., McGill, W.B., and Page, A.L., eds., Environmental Impact of Soil Component Interactions: Natural and Anthropogenic Organics. Chelsea, MI: Lewis Publishers, pp. 3–19.

    Google Scholar 

  • Schnitzer, M., and Kodama, H., 1966. Montmorillonite: Effect of pH on its adsorption of a soil humic compound, Science, 153: 70–71.

    Article  CAS  Google Scholar 

  • Schwertmann, U., Kodama, H., and Fisher, W.R., 1986. Mutual interactions between organics and iron oxides. In Huang, P.M., and Schnitzer, M., eds., Interactions of Soil Minerals with Natural Organics and Microbes. SSSA Special Publication 17. Madison, WI: Soil Science Society of America, pp. 223–250.

    Google Scholar 

  • Scotford, R.F., and Glastonbury, J.R., 1972. The effect of concentration on the rates of dissolution of gibbsite and boehmite. Can. J. Chem. Eng., 50: 754–759.

    Article  CAS  Google Scholar 

  • Singer, A., and Huang, P.M., 1993. Effect of humic acid on aluminum interlayering in montmorillonite. Soil Sci. Soc. Am. J., 57: 271–279.

    Article  CAS  Google Scholar 

  • Sprengel, C., 1826. Uber Pflazenhumus, Humussäure und Humussäure‐Salze. Kastner's Arch. Ges. Naturlehre., 8: 145–220.

    Google Scholar 

  • Spyridakis, D.E., Chesters, G., and Wilde, S.A., 1967. Kaolinization of biotite as a result of coniferous and deciduous seedling growth. Soil Sci. Soc. Am. Proc., 31: 203–210.

    Article  CAS  Google Scholar 

  • Stevenson, F.J., 1994. Humus Chemistry: Genesis. Composition. Reactions. New York: Wiley‐Interscience, 496 pp.

    Google Scholar 

  • Stone, A.T., 1986. Adsorption of organic reductants and subsequent electron transfer on metal oxide surfaces. In Davis, J.A., and Hayes, K.F., eds., Geochemical Processes at Mineral Surfaces. ACS Symposium Series 323. Washington, DC: ACS, pp. 446–461.

    Google Scholar 

  • Stumm, W.E., and Furrer, G., 1987. The dissolution of oxides and aluminum silicates; examples of surface‐coordination‐controlled kinetics. In Stumm, W.E., ed., Aquatic Surface Chemistry. New York: Wiley, pp. 197–219.

    Google Scholar 

  • Stumm, W.E., and Morgan, J.J., 1996. Aquatic Chemistry, 3rd edn. New York: Wiley, 1022 pp.

    Google Scholar 

  • Wada, S.‐I., and Wada, K., 1980. Formation, composition and structure of hydroxy‐aluminosilicate ions. J. Soil Sci., 21: 457–467.

    Article  Google Scholar 

  • Wang, M.C., and Huang, P.M., 1986. Humic macromolecule interlayering in nontronite through interaction with phenol monomers. Nature (London), 323: 529–531

    Article  CAS  Google Scholar 

  • Wilson, M.J., 2004. Weathering of the primary rock‐forming minerals: processes, products and rates. Clay Minerals, 39: 233–266.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Chesworth, W. et al. (2008). Clay Mineral Alteration in Soils. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_107

Download citation

Publish with us

Policies and ethics