Skip to main content

Dantzig, George B. (1914–2005)

  • Reference work entry
  • First Online:
The New Palgrave Dictionary of Economics

Abstract

George Dantzig is known as the ‘father of linear programming’ and the ‘inventor of the simplex method: Employed at the Pentagon (the US government’s defence establishment) in 1947 and motivated to ‘mechanize’ programming in large time-staged planning problems, George Dantzig gave a general statement of what is now known as a linear program, and invented an algorithm, the simplex method, for solving such optimization problems. By the force of Dantzig’s theory, algorithms, practice, and professional interaction, linear programming flourished. Linear programming has had an impact on economics, engineering, statistics, finance, transportation, manufacturing, management, and mathematics and computer science, among other fields. The list of industrial activities whose practice is affected by linear programming is very long.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected works

  • 1947. Prospectus for the AAF electronic computer. Unpublished manuscript.

    Google Scholar 

  • 1948a. A theorem on linear inequalities. Unpublished manuscript, 5 January.

    Google Scholar 

  • 1948b. Programming in a linear structure. Washington, DC: Comptroller, USAR February. Abstract in Econometrica 17(1949), 73–4.

    Google Scholar 

  • 1951. Application of the simplex method to a transportation problem. In Activity Analysis of Production and Allocation, ed. T.C. Koopmans. New York: John Wiley & Sons.

    Google Scholar 

  • 1951. (With A. Wald.) On the fundamental lemma of Neyman and Pearson. Annals of Mathematical Statistics 22, 87–93.

    Google Scholar 

  • 1954. (With D.R. Fulkerson.) Minimizing the number of tankers to meet a fixed schedule. Naval Research Logistics Quarterly 1, 217–22.

    Google Scholar 

  • 1954. (With D.R. Fulkerson and S.M. Johnson.) Solution of a large scale traveling-salesman problem. Journal of Operations Research Society of America 2, 393–410.

    Google Scholar 

  • 1954. (With W Orchard-Hays.) The product form for the inverse in the simplex method. Mathematical Tables and Other Aids to Computation 8, 64–7.

    Google Scholar 

  • 1955a. Upper bounds, secondary constraints, and block triangularity in linear programming. Econometrica 23, 174–83.

    Google Scholar 

  • 1955b. Linear programming under uncertainty. Management Science 1, 197–206.

    Google Scholar 

  • 1955. (With A.R. Fergusson.) The problem of routing aircraft. Aeronautical Engineering Review 14(4), 51–5. RAND Research Memorandum RM 1369, 1954.

    Google Scholar 

  • 1955. (With D.R. Fulkerson.) Computation of maximal flows in networks. Naval Research Logistics Quarterly 2, 277–83.

    Google Scholar 

  • 1955. (With A. Orden, A. and P. Wolfe.) The generalized simplex method for minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics 5(2), 183–195. RAND Research Memorandum RM–1264, 1954.

    Google Scholar 

  • 1956. Recent advances in linear programming. Management Science 2, 131–44.

    Google Scholar 

  • 1956. (With L.R. Ford, Jr. and D.R. Fulkerson.) A primal-dual algorithm for linear programs. In Linear Inequalities and Related Systems, Annals of Mathematics Study No. 38, ed. H.W Kuhn and A.W Tucker. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • 1957. Discrete variable extremum problems. Operations Research 5, 226–77.

    Google Scholar 

  • 1960a. On the shortest route through a network. Management Science 6, 187–90. RAND memorandum P-1345, 1959.

    Google Scholar 

  • 1960b. On the significance of solving linear programming problems with some integer variables. Econometrica 28, 30–44.

    Google Scholar 

  • 1960. (With P. Wolfe.) Decomposition principle for linear programs. Operations Research 8, 101–11.

    Google Scholar 

  • 1961. (With A. Madansky.) On the solution of two-stage linear programs under uncertainty. In Proceedings, Fourth Berkeley Symposium on Mathematical Statistics and Probability, I, ed. J. Neyman. Berkeley University of California Press. RAND memorandum P–2039, 1960.

    Google Scholar 

  • 1961. (With P. Wolfe.) The decomposition algorithm for linear programming. Econometrica 29, 767–78.

    Google Scholar 

  • 1963. Linear Programming and Extensions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • 1968. Large-scale linear planning. In Mathematics of the Decision Sciences, vol. 1, ed. G.B. Dantzig and A.F. Veinott, Jr. Providence, RI: American Mathematical Society.

    Google Scholar 

  • 1968. (With R.W Cottle.) Complementary pivot theory of mathematical programming. Linear Algebra and its Applications 1, 103–25.

    Google Scholar 

  • 1973. (With others.) On the need for a System Optimization Laboratory. In Mathematical Programming, ed. T.C. Hu and S.M. Robinson. New York: Academic Press.

    Google Scholar 

  • 1982. Reminiscences about the origins of linear programming. Operations Research Letters 1(2), 43–48.

    Google Scholar 

  • 1990. (With P.W Glynn.) Parallel processors for planning under uncertainty. Annals of Operations Research 22, 1–21.

    Google Scholar 

  • 1991. Linear programming. In History of Mathematical Programming: A Collection of Personal Reminiscences, ed. J.K. Lenstra, A.H.G. Rinnooy Kan and A. Schrijver. Amsterdam: North-Holland.

    Google Scholar 

  • 1992. (With G. Infanger.) Large-scale stochastic linear programs: importance sampling and Benders decomposition. In Computational and Applied Mathematics I - Algorithms and Theory, Proceedings of the 13th IMACS World Congress, ed. C. Brezinski and U. Kulisch. Amsterdam: North-Holland.

    Google Scholar 

  • 1997. (With M.N. Thapa.) Linear Programming, 1. Introduction. New York: Springer.

    Google Scholar 

  • 2003. (With M.N. Thapa.) Linear Programming 2: Theory and Extensions. New York: Springer.

    Google Scholar 

Bibliography

  • Albers, D.J., Alexanderson, G.L. and Reid, C. 1990. More Mathematical People. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Albers, D.J. and Reid, C. 1986. An interview with George B. Dantzig: the father of linear programming. College Mathematics Journal 17, 292–314.

    Article  Google Scholar 

  • Arrow, K.J., Hurwicz, L. and Uzawa, H. 1958. Studies in Linear and Non-Linear Programming. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Benders, J.K. 1962. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–52.

    Article  Google Scholar 

  • Charnes, A. and Cooper, WW 1962. On some works of Kantorovich, Koopmans and others. Management Science 8, 246–63.

    Article  Google Scholar 

  • Charnes, A. and Lemke, C.E. 1954. Minimization of non-linear separable convex functionals. Naval Research Logistics Quarterly 1, 301–12.

    Article  Google Scholar 

  • Cottle, R.W. 1964. Nonlinear programs with positively bounded Jacobians. Ph.D. thesis. Department of Mathematics. University of California at Berkeley.

    Google Scholar 

  • Cottle, R.W. 2003. The Basic George B. Dantzig. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Cottle, R.W. 2005. George B. Dantzig: operations research icon. Operations Research 53, 892–8.

    Article  Google Scholar 

  • Cottle, R.W 2006. George B. Dantzig: a life in mathematical programming. Mathematical Programming 105, 1–8.

    Article  Google Scholar 

  • Cottle, R.W and Wright, M.H. 2006. Remembering George Dantzig. SIAM News 39(3), 2–3.

    Google Scholar 

  • Dantzig, T. 1930. Number, The Language of Science. New York: Macmillan. 4th edition, ed. J. Mazur, republished New York: Pi Press, 2005.

    Google Scholar 

  • de la Vallée Poussin, M.C.J. 1911. Sur la méthode de l’approximation minimum. Annales de la Société Scientifique de Bruxelles 35, 1–16.

    Google Scholar 

  • Dijkstra, E. 1959. A note on two problems in connection with graphs. Numerische Mathematik 1, 269–71.

    Article  Google Scholar 

  • Dongarra, J. and Sullivan, F. 2000. The top 10 algorithms. Computing in Science and Engineering 2(1), 22–3.

    Article  Google Scholar 

  • Dorfman, R. 1984. The discovery of linear programming. Annals of the History of Computing 6, 283–95.

    Article  Google Scholar 

  • Dorfman, R., Samuelson, P.A. and Solow, R.M. 1958. Linear Programming and Economic Analysis. New York: McGraw-Hill.

    Google Scholar 

  • Eaves, B.C. 1972. Homotopies for the computation of fixed points. Mathematical Programming 3, 1–22.

    Article  Google Scholar 

  • Fiacco, A.V. and McCormick, G.P. 1968. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. New York: John Wiley & Sons.

    Google Scholar 

  • Flood, M.M. 1956. The traveling-salesman problem. Operations Research 4, 61–75.

    Article  Google Scholar 

  • Ford, L.R., Jr. and Fulkerson, D.R. 1962. Flows in Networks. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Fourier, J.B.J. 1826. Solution d’une question particulière du calcul des inégalités. Nouveau Bulletin des Sciences par la Société Philomatique de Paris, 99–100. Reprinted in Oeuvres de Fourier, Tome II, ed. G. Darboux. Paris: Gauthier, 1890.

    Google Scholar 

  • Frisch, R.A.K. 1955. The Logarithmic Potential Method of Convex Programs. Oslo: University Institute of Economics.

    Google Scholar 

  • Gale, D., Kuhn, H.W. and Tucker, A.W. 1951. Linear programming and the theory of games. In Activity Analysis of Production and Allocation, ed. T.C. Koopmans. New York: John Wiley & Sons.

    Google Scholar 

  • Gass, S.I. 1989. Comments on the history of linear programming. IEEE Annals of the History of Computing 11(2), 147–51.

    Google Scholar 

  • Gass, S.I. 2002. The first linear-programming shoppe. Operations Research 50, 61–8.

    Article  Google Scholar 

  • Gass, S.I. 2005. In Memoriam, George B. Dantzig. 2005. Online. Available at http://www.lionhrtpub.com/orms/orms–8–05/dantzig.html, accessed 12 January 2007.

  • Gass, S.I. and Saaty, T.L. 1955. The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly 2, 39–45.

    Article  Google Scholar 

  • Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A. and Wright, M.H. 2007. George B. Dantzig and systems optimization. Online. Available at http://www.stanford.edu/group/SOL/GBDandSOL.pdf, accessed 2 February 2007.

    Google Scholar 

  • Gomory, R.E. 1958. Essentials of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 256.

    Article  Google Scholar 

  • Hitchcock, F.L. 1941. The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics 20, 224–30.

    Article  Google Scholar 

  • Hoffman, A. 1953. Cycling in the Simplex Algorithm. Report No. 2974. Washington, DC: National Bureau of Standards.

    Google Scholar 

  • Hopp, W.J., ed. 2004. Ten most influential papers of Management Science’s first fifty years. Management Science 50(12 Supplement), 1764–9.

    Google Scholar 

  • Infanger, G. 1991. Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Annals of Operations Research 39, 41–67.

    Google Scholar 

  • John, F. 1948. Extremum problems with inequalities as side conditions. In Studies and Essays, Courant Anniversary Volume, ed. K.O. Friedrichs, O.E. Neugebauer and J.J. Stoker. New York: Wiley-Interscience.

    Google Scholar 

  • Kantorovich, L.V. 1942. Translocation of masses. Doklady Akademii Nauk SSSR 37, 199–201. Reprinted in Management Science 5 (1958–59), 1–4.

    Google Scholar 

  • Kantorovich, L.V. 1960. Mathematical methods of organizing and planning production Management Science 6, 363–422. English translation of original monograph published in 1939.

    Article  Google Scholar 

  • Kantorovich, L.V. and Gavurin, M.K. 1949. The application of mathematical methods to freight flow analysis. Problems of Raising the Efficiency of Transport Performance. Akademiia Nauk, USSR. (Kantorovich confirmed the paper was completed and submitted in 1940, but publication delayed by the Second World War.)

    Google Scholar 

  • Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–95.

    Article  Google Scholar 

  • Karush, W 1939. Minima of functions of several variables with inequalities as side constraints. MsC. dissertation, Department of Mathematics, University of Chicago.

    Google Scholar 

  • Kersey, C. 1989. Unstoppable. Naperville, IL: Sourcebooks, Inc.

    Google Scholar 

  • Khachiyan, L.G. 1979. A polynomial algorithm in linear programming in Russian. Doklady Akademii Nauk SSSR 244, 1093–6. English translation: Soviet Mathematics Doklady 20 (1979), 191–4.

    Google Scholar 

  • Klee, V and Minty, G.J. 1972. How good is the simplex algorithm? In Inequalities III, ed. O. Shisha. New York: Academic Press.

    Google Scholar 

  • Koopmans, T.C. 1947. Optimum utilization of the transportation system. Proceedings of the International Statistical Conferences, 1947, vol. 5. Washington D.C. Also in Econometrica 16 (1948), 66–8.

    Google Scholar 

  • Koopmans, T.C. 1949. Optimum utilization of the transportation system. Econometrica 17(Supplement), 136–46.

    Article  Google Scholar 

  • Koopmans, T.C, ed. 1951. Activity Analysis of Production and Allocation. New York: John Wiley & Sons.

    Google Scholar 

  • Koopmans, T.C. 1960. A note about Kantorovich’s paper, ‘Mathematical Methods of Organizing and Planning Production.’ Management Science 6, 363–5.

    Article  Google Scholar 

  • Kuhn, H.W and Tucker, A.W. 1951. Nonlinear Programming. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, ed. J. Neyman. Berkeley: University of California Press.

    Google Scholar 

  • Lemke, C.E. 1954. The dual method of solving the linear programming problem. Naval Research Logistics Quarterly 1, 36–47.

    Article  Google Scholar 

  • Lemke, CE. 1965. Bimatrix equilibrium points and mathematical programming. Management Sciences 11, 681–9.

    Article  Google Scholar 

  • Leontief, W.W. 1936. Quantitative input and output relations in the economic system of the United States. Review of Economic Statistics 18, 105–25.

    Article  Google Scholar 

  • Lustig, I. 2001. e-optimization.com. Interview with G.B. Dantzig. Online. Available at http://e-optimization.com/directory/trailblazers/dantzig, accessed 29 December 2006.

    Google Scholar 

  • Markowitz, H.M. 1956. The optimization of a quadratic function subject to linear constraints. Naval Research Logistics Quarterly 3, 111–33. RAND Research Memorandum RM–1438, 1955.

    Article  Google Scholar 

  • Orchard-Hays, W. 1954. A composite simplex algorithm-II. RAND Research Memorandum RM–1275. Santa Monica, CA: RAND Corporation.

    Google Scholar 

  • Rockafellar, R.T. 1970. Convex Analysis. Princeton, NJ: Princeton Press.

    Book  Google Scholar 

  • Scarf, H. 1967. The core of an N-person game. Econometrica 35, 50–69.

    Article  Google Scholar 

  • Scarf, H. 1973. The Computation of Economic Equilibria. New Haven, CT: Yale University Press.

    Google Scholar 

  • Schrijver, A. 1986. Theory of Linear and Integer Programming. Chichester: John Wiley & Sons.

    Google Scholar 

  • Smale, S. 1976. A convergent process of price adjustment and global Newton methods. Journal of Mathematical Economics 3, 1–14.

    Article  Google Scholar 

  • Smale, S. 1983. The problem of the average speed of the simplex method. In Mathematical Programming: The State of the Art, ed. A. Bachern, M. Grötschel and B. Korte. Berlin: Springer-Verlag.

    Google Scholar 

  • Stigler, G.J. 1945. The cost of subsistence. Journal of Farm Economics 27, 303–14.

    Article  Google Scholar 

  • Todd, M.J. 1996. Potential-reduction methods in mathematical programming. Mathematical Programming 76, 3–45.

    Google Scholar 

  • von Neumann, J. 1947. Discussion of a maximum problem. Unpublished working paper dated 15–16 November. In John von Neumann: Collected Works, vol. 6, ed. A.H. Taub. Oxford: Pergamon Press, 1963.

    Google Scholar 

  • von Neumann, J. and Morgenstern, O. 1944. Theory of Games and Economic Behavior. Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Authors

Editor information

Steven N. Durlauf Lawrence E. Blume

Copyright information

© 2008 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this entry

Cite this entry

Cotile, R.W., Eaves, B.C., Thapa, M.N. (2008). Dantzig, George B. (1914–2005). In: Durlauf, S.N., Blume, L.E. (eds) The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-58802-2_355

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-58802-2_355

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-0-333-78676-5

  • Online ISBN: 978-1-349-58802-2

Publish with us

Policies and ethics