Skip to main content

Wastewater Treatment Plant: Anthropogenic Micropollutant Indicators for Sustainable River Management

  • Reference work entry
  • First Online:
Water Sustainability
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC, 2012

Glossary

Micropollutant:

Pollutant that exists in very small traces in aquatic environment including pharmaceutical drugs and endocrine-disturbing compounds.

Pharmaceuticals:

Chemical substances used in the medical diagnosis, cure, treatment, or prevention of disease.

Metabolites:

Intermediates and products formed by the metabolic transformations of a drug.

Personal care products:

Products used by individuals for personal cosmetic reasons, including fragrances and cosmetics.

Anthropogenic indicator:

Molecular markers of sewage-derived contaminants which is useful for identifying the sources of pollutants and tracing their transport pathways in aquatic environment.

Wastewater effluent:

Wastewater discharge from the wastewater treatment systems based upon physical, chemical, and biological processes.

Octanol-water partitioning coefficient:

Distribution equilibrium of a compound between water and n-octanol (Kow) which is helpful to predict adsorption tendency of a compound.

...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Vanderford BJ, Snyder SA (2006) Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ Sci Technol 40:7312–7320

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021

    Article  CAS  PubMed  Google Scholar 

  3. Benotti MJ, Brownawell BJ (2009) Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environ Pollut 157:994–1002

    Article  CAS  PubMed  Google Scholar 

  4. Nakada N, Kiri K, Shinohara H, Harada A, Kuroda K, Takizawa S, Takada H (2008) Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environ Sci Technol 42:6347–6353

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  6. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Glassmeyer ST, Furlong ET, Kolpin DW, Cahill JD, Zaugg SD, Werner SL, Meyer MT, Kryak DD (2005) Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol 39:5157–5169

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Fono LJ, Kolodziej EP, Sedlak DL (2006) Attenuation of wastewater-derived contaminants in an effluent-dominated river. Environ Sci Technol 40:7257–7262

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, Schmidt R, Stachel B, von Tümpling W, Wanke A (2004) Pharmaceuticals in the river Elbe and its tributaries. Chemosphere 57:107–126

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA (2010) Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci Total Environ 408:636–643

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Godfrey E, Woessner WW, Benotti MJ (2007) Pharmaceuticals in on-site sewage effluent and ground water, western Montana. Ground Water 45:263–271

    Article  CAS  PubMed  Google Scholar 

  12. Benotti MJ, Brownawell BJ (2007) Distributions of pharmaceuticals in an urban estuary during both dry- and wet-weather conditions. Environ Sci Technol 41:5795–5802

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43:597–603

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kosjek T, Heath E, Kompare B (2007) Removal of pharmaceutical residues in a pilot wastewater treatment plant. Anal Bioanal Chem 387:1379–1387

    Article  CAS  PubMed  Google Scholar 

  15. Onesios KM, Yu JT, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20:441–466

    Article  CAS  PubMed  Google Scholar 

  16. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) Illicit drugs and pharmaceuticals in the environment – forensic applications of environmental data, part 2: pharmaceuticals as chemical markers of faecal water contamination. Environ Pollut 157:1778–1786

    Article  CAS  PubMed  Google Scholar 

  17. Buerge IJ, Poiger T, Müller MD, Buser H-R (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37:691–700

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947–954

    Article  CAS  PubMed  Google Scholar 

  19. Seiler RL, Zaugg SD, Thomas JM, Howcroft DL (1999) Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Ground Water 37:405–410

    Article  CAS  Google Scholar 

  20. Santos JL, Aparicio I, Callejon M, Alonso E (2009) Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J Hazard Mater 164:1509–1516

    Article  CAS  PubMed  Google Scholar 

  21. Lee S, Kang SI, Lim JL, Huh YJ, Cho J (2010, submitted) Evaluating controllability of pharmaceuticals and metabolites, in biologically-engineered processes, using corresponding octanol-water partitioning coefficient with consideration of ionizable functional groups

    Google Scholar 

  22. USEPA (1999) Protocol for EPA approval of new methods for organic and inorganic analytes in wastewater and drinking water. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  23. Fernández C, González-Doncel M, Pro J, Carbonell G, Tarazona JV (2010) Occurrence of pharmaceutically active compounds in surface waters of the henares-jarama-tajo river system (madrid, spain) and a potential risk characterization. Sci Total Environ 408:543–551

    Article  ADS  PubMed  Google Scholar 

  24. Ternes TA, Hirsch R (2000) Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environ Sci Technol 34:2741–2748

    Article  ADS  CAS  Google Scholar 

  25. Schulz M, Löffler D, Wagner M, Ternes TA (2008) Transformation of the x-ray contrast medium iopromide in soil and biological wastewater treatment. Environ Sci Technol 42:7207–7217

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Herber T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  Google Scholar 

  27. Winkler M, Lawrence JR, Neu TR (2001) Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res 35:3197–3205

    Article  CAS  PubMed  Google Scholar 

  28. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Buser H-R, Poiger T, Müller MD (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ Sci Technol 32:3449–3456

    Article  ADS  CAS  Google Scholar 

  30. Zwiener C (2007) Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Anal Bioanal Chem 387:1159–1162

    Article  CAS  PubMed  Google Scholar 

  31. Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lützhøfl HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment- a review. Chemosphere 36:357–393

    Article  ADS  PubMed  Google Scholar 

  32. Huerta-Fontela M, Galceran MT, Ventura F (2010) Fast liquid chromatography–quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water resources. J Chromatogr A 1217(25):4212–4222

    Article  CAS  PubMed  Google Scholar 

  33. Stumpf M, Ternes TA, Haberer K, Baumann W (1998) Isolation of ibuprofen-metabolites and their importance as pollutants of the aquatic environment. Vom Wasser 91:291–303

    CAS  Google Scholar 

  34. Weigel S, Berger U, Jensen E, Kallenborn R, Thoresen H, Hühnerfuss H (2004) Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56:583–592

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664

    Article  CAS  PubMed  Google Scholar 

  36. Roberts PH, Thomas KV (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 356:143–153

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Göbel A, Thomsen A, McArdell CA, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39:3981–3989

    Article  ADS  PubMed  Google Scholar 

  38. Zwiener C, Seeger S, Glauner T, Frimmel FH (2002) Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments. Anal Bioanal Chem 372:569–575

    Article  CAS  PubMed  Google Scholar 

  39. Young TA, Heidler J, Matos-Pérez CR, Sapkota A, Toler T, Gibson KE, Schwab KJ, Halden RU (2008) Ab Initio and in Situ comparison of caffeine, triclosan, and triclocarban as indicators of sewage-derived microbes in surface waters. Environ Sci Technol 42:3335–3340

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Doll TE, Frimmel FH (2003) Fate of pharmaceuticals-photodegradation by simulated solar UV-light. Chemosphere 52:1757–1769

    Article  ADS  CAS  PubMed  Google Scholar 

Books and Reviews

  • Asano T, Burton FL, Leverenz HL, Tsuchihashi R, Tchobanoglous G (2007) Water reuse: issues, technologies, and applications. McGraw-Hill, New York

    Google Scholar 

  • Niessen WMA (2006) Liquid chromatography-mass spectrometry, 3rd edn. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Snyder SA, Wert EC, Lei H, Westerhoff P, Yoon Y (2007) Removal of EDCs and pharmaceuticals in drinking and reuse treatment processes. Awwa Research Foundation, Denver

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Yeongsan and Seomjin River Watershed Management Committee, Ministry of Environment, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeweon Cho .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, E., Lee, S., Kim, Y., Huh, YJ., Kim, KS., Cho, J. (2012). Wastewater Treatment Plant: Anthropogenic Micropollutant Indicators for Sustainable River Management. In: Zhang, H.X. (eds) Water Sustainability. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2466-1_843

Download citation

Publish with us

Policies and ethics