Skip to main content

Desalination Technology for Sustainable Water Resource

  • Reference work entry
  • First Online:
Water Sustainability
  • 188 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC, 2012

Glossary

Brine:

Water that contains a salt concentration greater than 50,000 ppm. Also, it is generally used in MSF processes to describe inlet seawater.

Concentration polarization:

Higher level of concentration profile of solute nearest to the upstream membrane surface compared with the more or less well-mixed bulk fluid far from the membrane surface.

Forward osmosis:

Process using osmotic pressure difference between brine and permeate as the driving force for water production.

Fouling:

The deposition of suspended or dissolved substances on the membrane surface, at the membrane pore, or within membrane pores.

Membrane distillation:

Thermal-driven membrane process, in which only water vapor can be transported through hydrophobic membranes.

Multieffect distillation:

Process uses multiple evaporators in a sequence at progressively low pressures. Generated vapor from each effect is used as a heat source in the next effect.

Multistage flash distillation:

Process using flash evaporation to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. UNDP (2006) Human Development report 2006

    Google Scholar 

  2. WHO (2005) The World Health report 2005

    Google Scholar 

  3. Global Water Intelligence (2010) Global water market 2011, vol 1. Media Analytics Ltd., pp 101–121

    Google Scholar 

  4. Khawaji A, Kutubkhanah I, Wie J (2008) Advances in seawater desalination technologies. Desalination 221:47–69

    Article  CAS  Google Scholar 

  5. Global Water Intelligence (2011) DesalData.com

    Google Scholar 

  6. Abdul-Wahab SA, Reddy KV, Al-Weshahi MA, Al-Hatmi S, Tajeldin YM (2011) Development of a steady-state mathematical model for multistage flash (MSF) desalination plant. Int J Energy Res. https://doi.org/10.1002/er.1826

  7. Hussain AA, Nataraj SK, Abashar MEE, Al-Mutaz IS, Aminabhavi TM (2008) Prediction of physical properties of nanofiltration membranes using experiment and theoretical models. J Membr Sci 310:321–336

    Article  CAS  Google Scholar 

  8. Zhao D, Xue J, Li S, Sun H, Zhang Q-D (2011) Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater. Desalination 273:292–298

    Article  CAS  Google Scholar 

  9. Engelien HK, Larsson T, Skogestad S (2001) Simulation and optimization of heat integrated distillation columns. In: 42nd SIMS conference, Porsgrunn, Norway, pp 367–376

    Google Scholar 

  10. USEPA (2005) Membrane filtration guidance manual United States Environmental Protection Agency, EPA, 815-R-06-009

    Google Scholar 

  11. Van der Meer WGJ (2003) Mathematical modeling of NF and RO membrane filtration plants and modules. PhD thesis, Delft University of Technology, Netherlands

    Google Scholar 

  12. DOW filmtec (2005) Technical manual for FFILMTEC reverse osmosis membranes: liquid separation. Dow filmtec, Beulah

    Google Scholar 

  13. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  14. Wilf M (2007) The guidebook to membrane desalination technology: reverse osmosis, nanofiltration and hybrid systems, process, design, applications and economics. Balaban Desalination Publication, L'Aquila

    Google Scholar 

  15. Bhattacharyya D, Williams M (1992) Theory – reverse osmosis. Van Nostrand Reinhold, New York

    Google Scholar 

  16. Kim YM, Kim SJ, Kim YS, Lee S, Kim IS, Kim JH (2009) Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network. Desalination 238:312–332

    Article  CAS  Google Scholar 

  17. Eriksson P (1988) Nanofiltration extends the range of membrane filtration. Environ Prog 7:58–62

    Article  CAS  Google Scholar 

  18. Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445

    Article  PubMed  Google Scholar 

  19. Yu S, Gao C, Su H, Liu M (2001) Nanofiltration used for desalination and concentration in dye production. Desalination 140:97–100

    Article  CAS  Google Scholar 

  20. Amy G (2007) Membrane-based water desalination – state of the art and future prospects. In: International seminar by center for seawater desalination plant, Seoul, Korea

    Google Scholar 

  21. El-Manharawy S, Hafez A (2001) Water type and guidelines for RO system design. Desalination 139:97–113

    Article  CAS  Google Scholar 

  22. Al-Wazzan Y, Safar M, Ebrahim S, Burney N, Mesri A (2002) Desalting of subsurface water using spiral-wound reverse osmosis (RO) system: technical and economic assessment. Desalination 143:21–28

    Article  CAS  Google Scholar 

  23. Ebrahim S, Al-Wazzan Y, Safar M, Burney N, Al-Mesri A (2000) Pilot study on renovation of subsurface water using a reverse osmosis desalting system. Desalination 131:315–324

    Article  CAS  Google Scholar 

  24. El-Azizi IM, Omran AAM (2003) Design criteria of 10,000 m3/d SWRO desalination plant of Tajura, Libya. Desalination 153:273–279

    Article  CAS  Google Scholar 

  25. Elguera AM, Pérez Báez SO (2005) Development of the most adequate pre-treatment for high capacity seawater desalination plants with open intake. Desalination 184:173–183

    Article  CAS  Google Scholar 

  26. Khawaji AD, Kutubkhanah IK, Wie J-M (2007) A 13.3 MGD seawater RO desalination plant for Yanbu industrial city. Desalination 203:176–188

    Article  CAS  Google Scholar 

  27. Leparc J, Rapenne S, Courties C, Lebaron P, Croué JP, Jacquemet V, Turner G (2007) Water quality and performance evaluation at seawater reverse osmosis plants through the use of advanced analytical tools. Desalination 203:243–255

    Article  CAS  Google Scholar 

  28. Muirhead A, Beardsley S, Aboudiwan J (1982) Performance of the 12,000 m3/d seawater reverse osmosis desalination plant at Jeddah, Saudi Arabia January 1979 through January 1981. Desalination 42:115–128

    Article  CAS  Google Scholar 

  29. Sadhwani JJ, Veza JM, Santana C (2005) Case studies on environmental impact of seawater desalination. Desalination 185:1–8

    Article  CAS  Google Scholar 

  30. Teuler A, Glucina K, Laîné JM (1999) Assessment of UF pretreatment prior RO membranes for seawater desalination. Desalination 125:89–96

    Article  CAS  Google Scholar 

  31. Zidouri H (2000) Desalination in Morocco and presentation of design and operation of the Laayoune seawater reverse osmosis plant. Desalination 131:137–145

    Article  CAS  Google Scholar 

  32. Kim SL, Paul CJ, Ting YP (2002) Study on feed pretreatment for membrane filtration of secondary effluent. Sep Purif Technol 29:171–179

    Article  Google Scholar 

  33. Sheikholeslami R, Al-Mutaz IS, Koo T, Young A (2001) Pretreatment and the effect of cations and anions on prevention of silica fouling. Desalination 139:83–95

    Article  CAS  Google Scholar 

  34. Pearce GK (2007) The case for UF/MF pretreatment to RO in seawater applications. Desalination 203:286–295

    Article  CAS  Google Scholar 

  35. Wolf PH, Siverns S, Monti S (2005) UF membranes for RO desalination pretreatment. Desalination 182:293–300

    Article  CAS  Google Scholar 

  36. Al-Enezi G, Fawzi N (2003) Design consideration of RO units: case studies. Desalination 153:281–286

    Article  CAS  Google Scholar 

  37. Cho J, Amy G, Pellegrino J (2000) Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane. J Membr Sci 164:89–110

    Article  CAS  Google Scholar 

  38. Kim S, Hoek EMV (2007) Interactions controlling biopolymer fouling of reverse osmosis membranes. Desalination 202:333–342

    Article  CAS  Google Scholar 

  39. Luo M, Wang Z (2001) Complex fouling and cleaning-in-place of a reverse osmosis desalination system. Desalination 141:15–22

    Article  CAS  Google Scholar 

  40. Madaeni SS, Mohamamdi T, Moghadam MK (2001) Chemical cleaning of reverse osmosis membranes. Desalination 134:77–82

    Article  CAS  Google Scholar 

  41. Malek A, Hawlader MNA, Ho JC (1996) Design and economics of RO seawater desalination. Desalination 105:245–261

    Article  CAS  Google Scholar 

  42. Matsuura T (2001) Progress in membrane science and technology for seawater desalination – a review. Desalination 134:47–54

    Article  CAS  Google Scholar 

  43. Pohland HW (1981) Seawater desalination and reverse osmosis plant design. In: Coating conference, proceedings of the technical association of the pulp and paper industry, Atlanta, pp 157–167

    Google Scholar 

  44. Sablani SS, Goosen MFA, Al-Belushi R, Wilf M (2001) Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141:269–289

    Article  CAS  Google Scholar 

  45. Sheikholeslami R, Tan S (1999) Effects of water quality on silica fouling of desalination plants. Desalination 126:267–280

    Article  CAS  Google Scholar 

  46. Tay KG, Song L (2005) A more effective method for fouling characterization in a full-scale reverse osmosis process. Desalination 177:95–107

    Article  CAS  Google Scholar 

  47. Yiantsios SG, Sioutopoulos D, Karabelas AJ (2005) Colloidal fouling of RO membranes: an overview of key issues and efforts to develop improved prediction techniques. Desalination 183:257–272

    Article  CAS  Google Scholar 

  48. Zhou W, Song L, Guan TK (2006) A numerical study on concentration polarization and system performance of spiral wound RO membrane modules. J Membr Sci 271:38–46

    Article  CAS  Google Scholar 

  49. Barger M, Carnahan RP (1991) Fouling prediction in reverse osmosis processes. Desalination 83:3–33

    Article  CAS  Google Scholar 

  50. Fritzmann C, Lowenberg J, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis desalination. Desalination 216:1–76

    Article  CAS  Google Scholar 

  51. Hoek EMV, Allred J, Knoell T, Jeong B (2008) Modeling the effects of fouling on full-scale reverse osmosis process. J Membr Sci 314:33–49

    Article  CAS  Google Scholar 

  52. Beier SP (2006) Pressure driven membrane processes. Ventus Publishing, Copenhagen

    Google Scholar 

  53. Hoek EMV, Kim AS, Elimelech M (2002) Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations. Environ Eng Sci 19:357–372

    Article  CAS  Google Scholar 

  54. Kimura S, Nakao S (1975) Fouling of cellulose acetate tubular reverse osmosis modules treating the industrial water in Tokyo. Desalination 17:267–288

    Article  CAS  Google Scholar 

  55. Ng HY, Elimelech M (2004) Influence of colloidal fouling on rejection of trace organic contaminants by reverse osmosis. J Membr Sci 244:215–226

    Article  CAS  Google Scholar 

  56. Shaalan HF (2002) Development of fouling control strategies pertinent to nanofiltration membranes. Desalination 153:125–131

    Article  Google Scholar 

  57. Kurihara M, Yamamura H, Nakanishi T, Jinno S (2001) Operation and reliability of very high-recovery seawater desalination technologies by brine conversion two-stage RO desalination system. Desalination 138:191–199

    Article  CAS  Google Scholar 

  58. Avlonitis SA (2002) Operational water cost and productivity improvements for small-size RO desalination plants. Desalination 142:295–304

    Article  CAS  Google Scholar 

  59. Stover RL (2004) Development of a fourth generation energy recovery device. A ‘CTO’s notebook. Desalination 165:313–321

    Article  CAS  Google Scholar 

  60. Wilf M, Schierach MK (2001) Improved performance and cost reduction of RO seawater systems using UF pretreatment. Desalination 135:61–68

    Article  CAS  Google Scholar 

  61. Wilf M, Bartels C (2005) Optimization of seawater RO systems design. Desalination 173:1–12

    Article  CAS  Google Scholar 

  62. Bick A, Oron G (2005) Post-treatment design of seawater reverse osmosis plants: boron removal technology selection for potable water production and environmental control. Desalination 178:233–246

    Article  CAS  Google Scholar 

  63. Reynolds T, Debroux J (2007) Seawater desalination pilot program: first and second pass RO permeate and finished water quality. Marin Municipal Water District, Corte Madera

    Google Scholar 

  64. Jacob C (2007) Seawater desalination: boron removal by ion exchange technology. Desalination 205:47–52

    Article  CAS  Google Scholar 

  65. Nadav N (1999) Boron removal from seawater reverse osmosis permeate utilizing selective ion exchange resin. Desalination 124:131–135

    Article  CAS  Google Scholar 

  66. Taniguchi M, Kurihara M, Kimura S (2001) Boron reduction performance of reverse osmosis seawater desalination process. J Membr Sci 183:259–267

    Article  CAS  Google Scholar 

  67. Ahmed M, Shayya WH, Hoey D, Al-Handaly J (2001) Brine disposal from reverse osmosis desalination plants in Oman and The United Arab Emirates. Desalination 133:135–147

    Article  CAS  Google Scholar 

  68. Glueckstern P, Priel M (1997) Optimized brackish water desalination plants with minimum impact on the environment. Desalination 108:19–26

    Article  CAS  Google Scholar 

  69. Morton AJ, Callister IK, Wade NM (1997) Environmental impacts of seawater distillation and reverse osmosis processes. Desalination 108:1–10

    Article  CAS  Google Scholar 

  70. Global Water Intelligence (2008) IDA desalination yearbook 2007–2008. Media Analytics, Oxford, UK

    Google Scholar 

  71. Mickols WE, Busch M, Maeda Y, Tonner J (2005) A novel design approach for seawater plants. IDA World Congress, Singapore

    Google Scholar 

  72. Mulder M (1996) Basic principles of membrane technology, 2nd edn. Kluwer, Dordrecht/Boston

    Book  Google Scholar 

  73. Tufenki N, Elimelech M (2004) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38:529–536

    Article  ADS  Google Scholar 

  74. Yao KM, Habibian MT, O'Melia CR (1971) Water and waste water filtration: concepts and applications. Environ Sci Technol 5:1105–1112

    Article  ADS  CAS  Google Scholar 

  75. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modelling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  76. Rajagopalan R, Tien C (1976) Trajectory analysis of deep-bed filtration with sphere-in-cell porous-media model. AICHE J 22:523–533

    Article  CAS  Google Scholar 

  77. Shin JY, O'Mella CR (2006) Pretreatment chemistry for dual media filtration: model simulations and experimental studies. Water Sci Technol 53:167–175

    Article  CAS  PubMed  Google Scholar 

  78. Soltanieh M, Gill WN (1981) Review of reverse osmosis membranes and transport models. Chem Eng Commun 12:279–363

    Article  CAS  Google Scholar 

  79. Chen KL, Song L, Ong SL, Ng WJ (2004) The development of membrane fouling in full-scale RO processes. J Membr Sci 232:63–72

    Article  CAS  Google Scholar 

  80. Visvanathan C, Ben Aim R (1989) Studies on colloidal membrane fouling mechanisms in crossflow microfiltration. J Membr Sci 45:3–15

    Article  CAS  Google Scholar 

  81. Kim YM, Lee YS, Lee YG, Kim SJ, Yang DR, Kim IS, Kim JH (2009) Development of a package model for process simulation and cost estimation of seawater reverse osmosis desalination plant. Desalination 247:326–335

    Article  CAS  Google Scholar 

  82. Kim SJ, Lee YG, Cho KH, Kim YM, Choi S, Kim IS, Yang DR, Kim JH (2009) Site-specific raw seawater quality impact study on SWRO process for optimizing operation of the pressurized step. Desalination 238:140–157

    Article  CAS  Google Scholar 

  83. Kim SJ, Lee YG, Oh S, Lee YS, Kim YM, Jeon MG, Lee S, Kim IS, Kim JH (2009) Energy saving methodology for the SWRO desalination process: control of operating temperature and pressure. Desalination 247:260–270

    Article  CAS  Google Scholar 

  84. Lee YG, Lee YS, Jeon JJ, Lee S, Yang DR, Kim IS, Kim JH (2009) Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant. Desalination 247:180–189

    Article  CAS  Google Scholar 

  85. Kim SJ, Oh S, Lee YG, Jeon MG, Kim IS, Kim JH (2009) A control methodology for the feed water temperature to optimize SWRO desalination process using genetic programming. Desalination 247:190–199

    Article  CAS  Google Scholar 

  86. Lee YG, Kim DY, Kim YC, Lee YS, Jung DH, Park M, Park SJ, Lee S, Yang DR, Kim JH (2010) A rapid performance diagnosis of seawater reverse osmosis membranes: simulation approach. Desalin Water Treat 15:11–19

    Article  CAS  Google Scholar 

  87. El-Halwagi MM (1992) Synthesis of reverse-osmosis networks for waste reduction. AICHE J 38:1185–1198

    Article  CAS  Google Scholar 

  88. Maskan F, Wiley DE, Johnston LPM, Clements DJ (2000) Optimal design of reverse osmosis module networks. AICHE J 46:946–954

    Article  CAS  Google Scholar 

  89. Nemeth JE (1998) Innovative system designs to optimize performance of ultra-low pressure reverse osmosis membranes. Desalination 118:63–71

    Article  CAS  Google Scholar 

  90. Voros N, Maroulis ZB, Marinos-Kouris D (1996) Optimization of reverse osmosis networks for seawater desalination. Comput Chem Eng 20:S345–S350

    Article  CAS  Google Scholar 

  91. Zhu M, El-Halwagi MM, Al-Ahmad M (1997) Optimal design and scheduling of flexible reverse osmosis networks. J Membr Sci 129:161–174

    Article  CAS  Google Scholar 

  92. See HJ, Vassiliadis VS, Wilson DI (1999) Optimisation of membrane regeneration scheduling in reverse osmosis networks for seawater desalination. Desalination 125:37–54

    Article  CAS  Google Scholar 

  93. Voros NG, Maroulis ZB, Marinos-Kouris D (1997) Short-cut structural design of reverse osmosis desalination plants. J Membr Sci 127:47–68

    Article  CAS  Google Scholar 

  94. Lu Y-Y, Hu Y-D, Xu D-M, Wu L-Y (2006) Optimum design of reverse osmosis seawater desalination system considering membrane cleaning and replacing. J Membr Sci 282:7–13

    Article  CAS  Google Scholar 

  95. Lu Y-Y, Hu Y-D, Zhang X-L, Wu L-Y, Liu Q-Z (2007) Optimum design of reverse osmosis system under different feed concentration and product specification. J Membr Sci 287:219–229

    Article  CAS  Google Scholar 

  96. Lonsdale HK, Merten U, Riley RL (1965) Transport properties of cellulose acetate osmotic membranes. J Appl Polym Sci 9:1341–1362

    Article  CAS  Google Scholar 

  97. Hatfield GB, Graves GW (1970) Optimization of a reverse osmosis system using nonlinear programming. Desalination 7:147–177

    Article  Google Scholar 

  98. Tweddle TA, Thayer WL, Matsuura T, Fu-Hung H, Sourirajan S (1980) Specification of commercial reverse osmosis modules and predictability of their performance for water treatment applications. Desalination 32:181–198

    Article  Google Scholar 

  99. Sirkar KK, Dang PT, Rao GH (1982) Approximate design equations for reverse osmosis desalination by spiral-wound modules. Ind Eng Chem Process Des Dev 21:517–527

    Article  CAS  Google Scholar 

  100. Van Dijk JC, De Moel PJ, Van Den Berkmortel HA (1984) Optimizing design and cost of seawater reverse osmosis systems. Desalination 52:57–73

    Article  Google Scholar 

  101. Evangelista F (1985) A short cut method for the design of reverse osmosis desalination plants. Ind Eng Chem Process Des Dev 24:211–223

    Article  CAS  Google Scholar 

  102. Sekino M (1993) Precise analytical model of hollow fiber reverse osmosis modules. J Membr Sci 85:241–252

    Article  CAS  Google Scholar 

  103. Robertson MW, Watters JC, Desphande PB, Assef JZ, Alatiqi IM (1996) Model based control for reverse osmosis desalination processes. Desalination 104:59–68

    Article  CAS  Google Scholar 

  104. Sekino M (1995) Study of an analytical model for hollow fiber reverse osmosis module systems. Desalination 100:85–97

    Article  Google Scholar 

  105. Van der Meer WGJ, Riemersma M, Van Dijk JC (1998) Only two membrane modules per pressure vessel? Hydraulic optimization of spiral-wound membrane filtration plants. Desalination 119:57–64

    Article  Google Scholar 

  106. Al-Bastaki NM, Abbas A (1999) Modeling an industrial reverse osmosis unit. Desalination 126:33–39

    Article  CAS  Google Scholar 

  107. Al-Bastaki NM, Abbas A (2000) Predicting the performance of RO membranes. Desalination 132:181–187

    Article  CAS  Google Scholar 

  108. Wilf M, Klinko K (2001) Optimization of seawater RO systems design. Desalination 138:299–306

    Article  CAS  Google Scholar 

  109. Villafafila A, Mujtaba IM (2003) Fresh water by reverse osmosis based desalination: simulation and optimisation. Desalination 155:1–13

    Article  CAS  Google Scholar 

  110. Helal AM, El-Nashar AM, Al-Katheeri E, Al-Malek S (2003) Optimal design of hybrid RO/MSF desalination plants Part I: modeling and algorithms. Desalination 154:43–66

    Article  CAS  Google Scholar 

  111. Chatterjee A, Ahluwalia A, Senthilmurugan S, Gupta SK (2004) Modeling of a radial flow hollow fiber module and estimation of model parameters using numerical techniques. J Membr Sci 236:1–16

    Article  CAS  Google Scholar 

  112. Marcovecchio MG, Aguirre PA, Scenna NJ (2005) Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm. Desalination 184:259–271

    Article  CAS  Google Scholar 

  113. Abbas A, Al-Bastaki N (2005) Modeling of an RO water desalination unit using neural networks. Chem Eng J 114:139–143

    Article  CAS  Google Scholar 

  114. Geraldes V, Pereira NE, Norberta de Pinho M (2005) Simulation and optimization of medium-sized seawater reverse osmosis processes with spiral-wound modules. Ind Eng Chem Res 44:1897–1905

    Article  CAS  Google Scholar 

  115. Senthilmurugan S, Gupta SK (2006) Modeling of a radial flow hollow fiber module and estimation of model parameters for aqueous multi-component mixture using numerical techniques. J Membr Sci 279:466–478

    Article  CAS  Google Scholar 

  116. Moch & Assiciates B.R.E (2002) WTCcost, water treatment cost estimation program. US Bureau of Reclamation

    Google Scholar 

  117. Farrell MD, Cimino J (2003) Reverse osmosis desalination cost planning model. In: Proceedings of IDA World congress on desalination and water reuse, Bahamas

    Google Scholar 

  118. Van der Bruggen B, Vandecasteele C (2002) Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. Desalination 143:207–218

    Article  Google Scholar 

  119. Abdella DL (1994) Reverse osmosis desalination. Mar Technol 31:195–200

    Google Scholar 

  120. McGinnis RL, Elimelech M (2008) Global challenges in energy and water supply: the promise of engineered osmosis. Environ Sci Technol 42:8625–8629

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87

    Article  CAS  Google Scholar 

  122. Miller JE, Evans LR (2006) Forward osmosis: a new approach to water purification and desalination. Sandia National Laboratories, Albuquerque. Livermore

    Google Scholar 

  123. McCutcheon JR, Elimelech M (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci 284:237–247

    Article  CAS  Google Scholar 

  124. McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination 174:1–11

    Article  CAS  Google Scholar 

  125. Chung TS, Zhang S, Wang KY, Su J, Ling MM (2011) Forward osmosis processes: yesterday, today and tomorrow. Desalination. https://doi.org/10.1016/j.desal.2010.12.019

  126. Achilli A, Childress AE (2010) Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation – review. Desalination 261:205–211

    Article  CAS  Google Scholar 

  127. Phillip WA, Yong JS, Elimelech M (2010) Reverse draw solute permeation in forward osmosis: modeling and experiments. Environ Sci Technol 44:5170–5176

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Lee KL, Baker RW, Lonsdale HK (1981) Membranes for power generation by pressure-retarded osmosis. J Membr Sci 8:141–171

    Article  CAS  Google Scholar 

  129. Jung DH, Lee J, Kim DY, Lee YG, Park M, Lee S, Yang DR, Kim JH (2011) Simulation of forward osmosis membrane process: effect of membrane orientation and flow direction of feed and draw solutions. Desalination 277:83–91

    Article  CAS  Google Scholar 

  130. Tiraferri A, Yip NY, Phillip WA, Schiffman JD, Elimelech M (2011) Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J Membr Sci 367:340–352

    Article  CAS  Google Scholar 

  131. Park M, Lee JJ, Lee S, Kim JH (2011) Determination of a constant membrane structure parameter in forward osmosis processes. J Membr Sci 375:241–248

    Article  CAS  Google Scholar 

  132. Mallevialle JL, Odendaal PE, Wiesner MR (1996) Water treatment membrane processes. McGraw-Hill, New York/London

    Google Scholar 

  133. Mi B, Elimelech M (2010) Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J Membr Sci 348:337–345

    Article  CAS  Google Scholar 

  134. Elimelech M (2007) Yale constructs forward osmosis desalination pilot plant. Membr Technol 2007:7–8

    Article  Google Scholar 

  135. Tan CH, Ng HY (2008) Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. J Membr Sci 324:209–219

    Article  CAS  Google Scholar 

  136. Phuntsho S, Shon HK, Hong S, Lee S, Vigneswaran S (2011) A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. J Membr Sci 375:172–181

    Article  CAS  Google Scholar 

  137. Bodell BR (1963) Silicone rubber vapor diffusion in saline water distillation. US Patent 285032

    Google Scholar 

  138. Findley ME (1967) Vaporization through porous membranes. Ind Eng Chem Process Des Dev 6:226–230

    Article  CAS  Google Scholar 

  139. Gore DW (1982) Gore-tex membrane distillation. In: Proceedings of the tenth annual convention of the water supply improvement association, Honolulu

    Google Scholar 

  140. Andersson SI, Kjellander N, Rodesjο B (1985) Design and field tests of a new membrane distillation desalination process. Desalination 56:345–354

    Article  CAS  Google Scholar 

  141. El-Bourawi MS, Ding Z, Ma R, Khayet M (2006) A framework for better understanding membrane distillation separation process. J Membr Sci 285:4–29

    Article  CAS  Google Scholar 

  142. Schneider K, Van Gassel TJ (1984) Membrane distillation. Chem Ing Tech 56:514–521

    Article  CAS  Google Scholar 

  143. Lawson KW, Lloyd DR (1997) Membrane distillation. J Membr Sci 124:1–25

    Article  CAS  Google Scholar 

  144. Banat FA, Simandl J (1994) Theoretical and experimental study in membrane distillation. Desalination 95:39–52

    Article  CAS  Google Scholar 

  145. Bandini S, Gostoli C, Sarti GC (1992) Separation efficiency in vacuum membrane distillation. J Membr Sci 73:217–229

    Article  CAS  Google Scholar 

  146. Khayet M, Godino P, Mengual JI (2000) Theory and experiments on sweeping gas membrane distillation. J Membr Sci 165:261–272

    Article  CAS  Google Scholar 

  147. Kimura S, Nakao SI, Shimatani SI (1987) Transport phenomena in membrane distillation. J Membr Sci 33:285–298

    Article  CAS  Google Scholar 

  148. Martínez-Díez L, Vázquez-González MI (1999) Temperature and concentration polarization in membrane distillation of aqueous salt solutions. J Membr Sci 156:265–273

    Article  Google Scholar 

  149. Schofield RW, Fane AG, Fell CJD (1987) Heat and mass transfer in membrane distillation. J Membr Sci 33:299–313

    Article  CAS  Google Scholar 

  150. Zhu C, Liu G (2000) Modeling of ultrasonic enhancement on membrane distillation. J Membr Sci 176:31–41

    Article  CAS  Google Scholar 

  151. Khayet M (2011) Membranes and theoretical modeling of membrane distillation: a review. Adv Colloid Interf Sci 164:56–88

    Article  CAS  Google Scholar 

  152. Hogan PA, Sudjito A, Fane AG, Morrison GL (1991) Desalination by solar heated membrane distillation. Desalination 81:81–90

    Article  CAS  Google Scholar 

  153. Weyl PK (1967) Recovery of demineralized water from saline waters. United States Patent 3340186

    Google Scholar 

  154. Kim S, Cho D, Lee MS, Oh BS, Kim JH, Kim IS (2009) SEAHERO R&D program and key strategies for the scale-up of a seawater reverse osmosis (SWRO) system. Desalination 238:1–9

    Article  CAS  Google Scholar 

  155. Park M, Lee YS, Lee YG, Kim JH (2010) SeaHERO core technology and its research scope for a seawater reverse osmosis desalination system. Desalin Water Treat 15:1–4

    Article  Google Scholar 

  156. Criscuoli A, Drioli E (1999) Energetic and exergetic analysis of an integrated membrane desalination system. Desalination 124:243–249

    Article  CAS  Google Scholar 

  157. Phattaranawik J, Jiraratananon R, Fane AG (2003) Heat transport and membrane distillation coefficients in direct contact membrane distillation. J Membr Sci 212:177–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Ha Kim .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, J.H., Balaban, M. (2012). Desalination Technology for Sustainable Water Resource. In: Zhang, H.X. (eds) Water Sustainability. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2466-1_264

Download citation

Publish with us

Policies and ethics