Skip to main content

Salmonella in Poultry and Other Birds

  • Reference work entry
  • First Online:
Infectious Diseases
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC, part of Springer Nature 2021

Glossary

Bacteriophage (phage):

A virus that infects and replicates only within bacteria, ubiquitous in the environment. Bacteriophages consist of an internal nucleic acid and a shell of capsid proteins. They are nonmotile and depend on passive motion to reach their bacterial hosts.

Base pairs (bp):

A unit of double-stranded nucleic acids consisting of two nucleobases bound together by hydrogen bonds, that form the building units of the DNA double helix and contribute to the folded structure of DNA and RNA.

Biofilm:

An aggregate of microorganisms that stick to each and in many cases also to living or nonliving surfaces. The cells are embedded in a slimy extracellular matrix composed of extracellular polymeric substances.

Competitive exclusion (CE):

A condition in the intestines when normal intestinal bacterial flora colonizes the intestine and prevent colonization of other, usually pathogenic, bacteria.

Gram-negative bacteria:

Bacteria that do not retain the crystal violet stain used...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Yan SS, Pendrak ML, Abela-Ridder B, Punderson JW, Fedorko DP, Foley SL (2003) An overview of Salmonella typing. Clin Appl Immunol Rev 4:189–204

    Google Scholar 

  2. Coburn B, Grass GA, Finlay BB (2007) Salmonella, the host and disease: a brief review. Immunol Cell Biol 85:112–118

    Article  Google Scholar 

  3. Wotzka SY, Nguyen BD, Hardt WD (2017) Salmonella Typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe 21:443–454

    Article  CAS  Google Scholar 

  4. Vågene ÅJ, Herbig A, Campana MG, Robles G, Nelly M, Warinner C, Sabin S, Spyrou MA, Andrades VA, Huson D, Tuross N, Bos KI, Krause J (2018) Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol 2(3):520–528

    Article  Google Scholar 

  5. Key FM, Posth C, Esquivel-Gomez LR, Hübler R, Spyrou MA, Neumann GU, Furtwängler AS, Susanna BM, Wissgott A, Lankapalli AK, Vågene A et al (2020) Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat Ecol Evol 4(3):324–333

    Article  Google Scholar 

  6. Anonymous (1934) The Salmonella Subcommittee of the Nomenclature Committee of the International Society for Microbiology, The Genus Salmonella Lignières, 1900. J Hyg (Lond) 34:333–350

    Article  Google Scholar 

  7. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z, Sangal V et al (2012) Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 8:e1002776. https://doi.org/10.1371/journal.ppat.1002776

    Article  CAS  Google Scholar 

  8. Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, Barron A, Layton A, Pickard D, Kingsley RA, Bignell A, Clark L, Harris B, Ormond D, Abdellah Z, Brooks K, Cherevach I, Chillingworth T, Woodward J, Norberczak H, Lord A, Arrowsmith C, Jagels K, Moule S, Mungall K, Sanders M, Whitehead S, Chabalgoity JA, Maskell D, Humphrey T, Roberts M, Barrow PA, Dougan G, Par J (2008) Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18(10):1624–1637

    Article  CAS  Google Scholar 

  9. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z, Sangal V, Krauland MG, Hale JL, Harbottle H, Uesbeck A, Dougan G, Harrison LH, Brisse S, S. Enterica MLST Study Group (2012) Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 8(6):e1002776. https://doi.org/10.1371/journal.ppat.1002776. Epub 2012 Jun 21

    Article  CAS  Google Scholar 

  10. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889

    Article  Google Scholar 

  11. Chimalizeni Y, Kawaza K, Molyneux E (2010) The epidemiology and management of non-typhoidal Salmonella infections. Adv Exp Med Biol 659:33–46

    Article  Google Scholar 

  12. Pui CF, Wong WC, Chai LC, Tunung R, Jeyalectchumi P, Noor Hidayah MS, Ubong A, Farinazleen MG, Cheah YK, Son R (2011) Salmonella: a foodborne pathogen. Int Food Res J 18:465–473

    Google Scholar 

  13. Niki M, Shakeel A, Zahid K, Konstantinos CK (2017) Prevalence, risks and antibiotic resistance of Salmonella in poultry production chain. In: Current topics in Salmonella and salmonellosis. InTechOpen, London, pp 216–234

    Google Scholar 

  14. Shah DH, Paul NC, Sischo WC, Crespo R, Guard J (2017) Microbiology and food safety: population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult Sci 96(3):687–702

    Article  CAS  Google Scholar 

  15. Beuchat LR, Heaton EK (1975) Salmonella survival on pecans as influenced by processing and storage conditions. Appl Microbiol 29(6):795–801

    Article  CAS  Google Scholar 

  16. Tadesse DA, Hoffmann M, Sarria S, Lam C, Brown E, Allard M, McDermotta PF (2018) Complete genome sequences of 14 Salmonella enterica serovar Enteritidis strains recovered from human clinical cases between 1949 and 1995 in the United States. Genome Announc 6(1):e01406–e01417

    Article  Google Scholar 

  17. Eichhorn I, Tedin K, Fulde M (2017) Draft genome sequence of Salmonella enterica subsp. enterica Serovar Typhimurium Q1. Genome Announc 5(42):e01151–e01117

    Article  Google Scholar 

  18. Bowe F, Lipps CJ, Tsolis RM, Groisman E, Heffron F, Kusters JG (1998) At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice. Infect Immun 66(7):3372–3377

    Article  CAS  Google Scholar 

  19. Kim S, Kim E, Park S, Hahn T-W, Yoon H (2017) Genomic approaches for understanding the characteristics of Salmonella enterica subsp. enterica Serovar Typhimurium ST1120, isolated from swine feces in Korea. Microb Biotechnol 27(11):1983–1993

    Article  CAS  Google Scholar 

  20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  21. Popoff MY, Bockemuhl J, Gheesling LL (2004) Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res Microbiol 155:568–570

    Article  Google Scholar 

  22. Grimont PAD, Weill FX (2007) Antigenic formulae of the Salmonella Serovars, 9th ed. World Health Organization Collaborating Center for Reference and Research on Salmonella, Institut Pasteur, Paris. https://www.pasteur.fr/sites/default/files/veng_0.pdf

  23. Alvarez J, Sota M, Vivanco AB, Perales I, Cisterna R, Rementeria A, Garaizar J (2004) Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples. J Clin Microbiol 42(4):1734–1738

    Article  CAS  Google Scholar 

  24. Ahmad N, Hasani N, Suwaibah H (2017) Duplex PCR for the detection of Salmonella spp. and Salmonella typhimurium in fresh coconut milk. Int Food Res J 25:2138–2142

    Google Scholar 

  25. Malorny B, Paccassoni E, Fach P, Bunge C, Martin A, Helmuth R (2004) Diagnostic real-time PCR for detection of Salmonella in food. Appl Environ Microbiol 70(12):7046–7052

    Article  CAS  Google Scholar 

  26. Maurischat S, Baumann B, Martin A, Malorny B (2015) Rapid detection and specific differentiation of Salmonella enterica subsp. enterica Enteritidis, Typhimurium and its monophasic variant 4,[5],12:i: −by real-time multiplex PCR. Int J Food Microbiol 193:8–14

    Article  CAS  Google Scholar 

  27. Heymans R, Vila A, van Heerwaarden CAM, Jansen CCC, Castelijn GAA, van der Voort M, Biesta-Peter EG (2018) Rapid detection and differentiation of Salmonella species, Salmonella Typhimurium and Salmonella Enteritidis by multiplex quantitative PCR. PLoS One 13(10):e0206316

    Article  Google Scholar 

  28. WHO (2015) WHO estimates of the global burden of foodborne diseases, foodborne disease burden epidemiology reference group 2007–2015. World Health Organization, Geneva

    Google Scholar 

  29. Streit JM, Jones RN, Toleman MA, Stratchounski LS, Fritsche TR (2006) Prevalence and antimicrobial susceptibility patterns among gastroenteritis-causing pathogens recovered in Europe and Latin America and Salmonella isolates recovered from bloodstream infections in North America and Latin America: report from the SENTRY Antimicrobial Surveillance Program (2003). Int J Antimicrob Agents 27(5):378–386

    Article  Google Scholar 

  30. Gillespie B, Mathew A, Draughon F, Jayarao B, Oliver S (2003) Detection of Salmonella enterica somatic groups C1 and E1 by PCR-enzyme-linked immunosorbent assay. J Food Prot 66:2367–2370

    Article  CAS  Google Scholar 

  31. EFSA (2006) The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2005. EFSA J. https://doi.org/10.2903/j.efsa.2006.94r

  32. Davies RH, Wray C (1996) Determination of an effective sampling regime to detect Salmonella enteritidis in the environment of poultry units. Vet Microbiol 50:117–127

    Article  CAS  Google Scholar 

  33. Journal EFSA (2007) The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA J 130:23–106

    Google Scholar 

  34. Aho M (1992) Problems of Salmonella sampling. Int J Food Microbiol 15:225–235

    Article  CAS  Google Scholar 

  35. Henzler DJ, Kradel DC, Sischo WM (1998) Management and environmental risk factors for Salmonella enteritidis contamination of eggs. Am J Vet Res 59:824–829

    CAS  Google Scholar 

  36. Davies RH, Breslin M (2003) Persistence of Salmonella enteritidis phage type 4 in the environment and arthropod vectors on an empty freerange chicken farm. Environ Microbiol 5:79–84

    Article  Google Scholar 

  37. Pavic A, Groves PJ, Cox JM (2011) Development and validation of a drag swab method using tampons and different diluents for the detection of members of Salmonella in broiler houses. Avian Pathol 40(6):651–656

    Article  Google Scholar 

  38. Mueller-Doblies D, Sayers AR, Carrique-Mas JJ, Davies RH (2009) Comparison of sampling methods to detect Salmonella infection of turkey flocks. J Appl Microbiol 107(2):635–645

    Article  CAS  Google Scholar 

  39. Mitchell BW, Buhr RJ, Berrang ME, Bailey JS, Cox NA (2002) Reducing airborne pathogens, dust and Salmonella transmission in experimental hatching cabinets using an electrostatic space charge system. Poult Sci 81(1):49–55

    Article  CAS  Google Scholar 

  40. Kallapura G, Morgan MJ, Pumford NR, Bielke LR, Wolfenden AD, Faulkner OB, Latorre JD, Menconi A, Hernandez-Velasco X, Kuttappan VA, Hargis BM, Tellez G (2014) Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium. Poult Sci 93(2):340–346

    Article  CAS  Google Scholar 

  41. Gast RK, Mitchell BW, Holt PS (1998) Airborne transmission of Salmonella Enteritidis infection between groups of chicks in controlled-environment isolation cabinets. Avian Dis 42(2):315–320

    Article  CAS  Google Scholar 

  42. Gast RK, Holt PS (1998) Persistence of Salmonella enteritidis from one day of age until maturity in experimentally infected layer chickens. Poult Sci 77:1759–1762

    Article  CAS  Google Scholar 

  43. Dhillon AS, Alisantosa B, Shivaprasad HL, Jack O, Schaberg D, Bandli D (1999) Pathogenicity of Salmonella enteritidis phage types 4, 8, and 23 in broiler chicks. Avian Dis 43(3):506–515

    Article  CAS  Google Scholar 

  44. Barrow PA (2000) The paratyphoid Salmonellae. Rev Sci Tech Off Int Epiz 19(2):351–375

    Article  CAS  Google Scholar 

  45. Davies RH, Breslin M (2004) Observations on Salmonella contamination of eggs from infected commercial laying flocks where vaccination for Salmonella Enterica serovar Enteritidis had been used. Avian Pathol 33(2):133–144

    Article  Google Scholar 

  46. Martelli F, Davies RH (2012) Salmonella serovars isolated from table eggs: an overview. Food Res Int 45(2):745–754

    Google Scholar 

  47. Lublin A, Sela S (2008) The impact of temperature during the storage of table eggs on the viability of Salmonella enterica serovars Enteritidis and Virchow in the eggs. Poult Sci 87(11):2208–2214

    Article  CAS  Google Scholar 

  48. Todd ECD (1996) Risk assessment of use of cracked eggs in Canada. Int J Food Microbiol 30:125–143

    Article  CAS  Google Scholar 

  49. Stadelman WJ, Cotterill OJ (1995) Egg science and technology, 4th edn. The Haworth Press, New York, pp 115–119

    Google Scholar 

  50. De Buck J, Van Immerseel F, Haesebrouck F, Ducatelle R (2004) Colonization of the chicken reproductive tract and egg contamination by Salmonella. J Appl Microbiol 97(2):233–245

    Article  Google Scholar 

  51. Gast RK, Holt PS (2000) Influence of the level and location of contamination on the multiplication of Salmonella enteritidis at different storage temperatures in experimentally inoculated eggs. Poult Sci 79(4):559–563

    Article  CAS  Google Scholar 

  52. Latimer HK, Jaykus LA, Morales RA, Cowen P, Crawford-Brown D (2002) Sensitivity analysis of Salmonella enteritidis levels in contaminated eggs using a biphasic growth model. Int J Food Microbiol 75:71–87

    Article  Google Scholar 

  53. Lublin A, Maler I, Mechani S, Pinto R, Sela-Saldinger S (2015) Survival of Salmonella enterica serovar Infantis on and within stored table eggs. J Food Prot 78(2):287–292

    Article  Google Scholar 

  54. Gast RK, Guard-Petter J, Holt PS (2002) Characteristics of Salmonella enteritidis contamination in eggs after oral, aerosol and intravenous inoculation of laying hens. Avian Dis 46:629–635

    Article  Google Scholar 

  55. Keller LH, Benson CE, Krotec K, Eckroade RJ (1995) Salmonella enteritidis colonization of the reproductive tract and forming and freshly laid eggs. Infect Immun 63:2443–2449

    Article  CAS  Google Scholar 

  56. Messens W, Duboccage L, Grijspeerdt K, Heyndrickx M, Herman L (2004) Growth of Salmonella serovars in hens’ egg albumen as affected by storage prior to inoculation. Food Microbiol 21:25–32

    Article  Google Scholar 

  57. Afshari A, Baratpour A, Khanzade S, Jamshidi A (2018) Salmonella Enteritidis and Salmonella Typhimurium identification in poultry carcasses. Iran J Microbiol 10(1):45–50

    Google Scholar 

  58. Whyte P, McGill K, Collins J, GormLey E (2002) The prevalence and PCR detection of Salmonella contamination in raw poultry. Vet Microbiol 89:53–60

    Article  CAS  Google Scholar 

  59. Waldroup AL (1996) Contamination of raw poultry with pathogens. Worlds Poult Sci J 52(1):7–25

    Article  Google Scholar 

  60. Harrison W, Griffith C, Tennant D, Peters A (2001) Incidence of Campylobacter and Salmonella isolated from retail chicken and associated packaging in South Wales. Lett Appl Microbiol 33(6):450–454

    Article  CAS  Google Scholar 

  61. Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, White DG, Wagner D, Meng J (2001) Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl Environ Microbiol 67(12):5431–5436

    Article  CAS  Google Scholar 

  62. Simmons M, Fletcher D, Cason J, Berrang M (2003) Recovery of Salmonella from retail broilers by a whole-carcass enrichment procedure. J Food Prot 66:446–450

    Article  CAS  Google Scholar 

  63. Altekruse SF, Bauer N, Chanlongbutra A, DeSagun R, Naugle A, Schlosser W, Umholtz R, White P (2006) Emerg Infect Dis 12(12):1848–1852

    Article  Google Scholar 

  64. EFSA (2010) Salmonella. https://www.efsa.europa.eu/en/topics/topic/Salmonella

  65. Waldroup A, Rathgeber B, Forsythe R, Smoot L (1992) Effects of six modifications on the incidence and levels of spoilage and pathogenic organisms on commercially processed postchill broilers. J Appl Poult Res 1:226–234

    Article  Google Scholar 

  66. Mulder RWAW, Dorresteijn LWJ, Van der Broek J (1978) Cross-contamination during the scalding and plucking of broilers. Br Poult Sci 19:61–70

    Article  Google Scholar 

  67. Medscape (2019). https://www.medscape.com/answers/228174-77482/what-is-the-infectious-dose-of-salmonella

  68. Ido N, Lee K-I, Iwabuchi K, Izumiya H, Uchida I, Kusumoto M, Iwata T, Ohnishi M, Akiba M (2014) Characteristics of Salmonella enterica Serovar 4,[5],12:i:- as a monophasic variant of serovar Typhimurium. PLoS One 9(8):e104380

    Article  Google Scholar 

  69. Soto-Arias JP, Groves RL, Barak JD (2014) Transmission and retention of Salmonella enterica by phytophagous hemipteran insects. Appl Environ Microbiol 80(17):5447–5456

    Article  Google Scholar 

  70. Whiley H, Gardner MG, Ross K (2017) A review of Salmonella and Squamates (lizards, snakes and amphisbians): implications for public health. Pathogens 6(3):38

    Article  Google Scholar 

  71. Thorns C (2000) Bacterial food-borne zoonoses. Rev Sci Tech 19:226–239

    Article  CAS  Google Scholar 

  72. Henzler DJ, Opitz HM (1992) The role of mice in the epizootiology of Salmonella enteritidis infection on chicken layer farms. Avian Dis 36(3):625–631

    Article  CAS  Google Scholar 

  73. Olsen AR, Hammack TS (2000) Isolation of Salmonella spp. from the housefly, Musca domestica L., and the dump fly, Hydrotaea aenescens (Wiedemann) (Diptera: Muscidae), at caged-layer houses. J Food Prot 63(7):958–960

    Article  CAS  Google Scholar 

  74. Pava-Ripoll M, Pearson RE, Miller AK, Ziobro GC (2015) Detection of foodborne bacterial pathogens from individual filth flies. J Vis Exp 96:e52372

    Google Scholar 

  75. Nakamura M, Nagamine N, Takahashi T, Suzuki S, Kijima M, Tamura Y, Sato S (1994) Horizontal transmission of Salmonella enteritidis and effect of stress on shedding in laying hens. Avian Dis 38(2):282–288

    Article  CAS  Google Scholar 

  76. Turnbull PCB, Snoeyenbos GH (1974) Experimental salmonellosis in the chicken. I. Fate and host response in alimentary canal, liver and spleen. Avian Dis 18:153–177

    Article  CAS  Google Scholar 

  77. Jones FT, Richardson KE (2004) Salmonella in commercially manufactured feeds. Poult Sci 83(3):384–391

    Article  CAS  Google Scholar 

  78. Van Immerseel F, Methner U, Rychlik I, Nagy B, Velge P, Martin G, Foster N, Ducatelle R, Barrow PA (2005) Vaccination and early protection against non-host-specific Salmonella serotypes in poultry: exploitation of innate immunity and microbial activity. Epidemiol Infect 133(6):959–978

    Article  Google Scholar 

  79. Muniz EC, Verdi R, Leão JA, Back A, Nascimento VPD (2017) Evaluation of the effectiveness and safety of a genetically modified live vaccine in broilers challenged with Salmonella Heidelberg. Avian Pathol 46:676–682

    Article  Google Scholar 

  80. Dórea FC, Cole DJ, Hofacre C, Zamperini K, Mathis D, Doyle MP, Lee MD, Maurer JJ (2010) Effect of Salmonella vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations. Appl Environ Microbiol 76:7820–7825

    Article  Google Scholar 

  81. de Freitas Neto OC, Mesquita AL, de Paiva JB, Zotesso F, Berchieri A, Júnior (2008) Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines. Braz J Microbiol 39(2):390–396

    Article  Google Scholar 

  82. Liu W, Yang Y, Chung N, Kwang J (2001) Induction of humoral immune response and protective immunity in chickens against Salmonella enteritidis after a single dose of killed bacterium-loaded microspheres. Avian Dis 45(4):797–806

    Article  CAS  Google Scholar 

  83. Gast RK, Stone HD, Holt PS (1993) Evaluation of the efficacy of oil-emulsion bacterins for reducing fecal shedding of Salmonella Enteritidis by laying hens. Avian Dis 37(4):1085–1091

    Article  CAS  Google Scholar 

  84. Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33(8):574–581

    Article  CAS  Google Scholar 

  85. Rantala M, Nurmi E (1973) Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chickens. Br Poult Sci 14(6):627–630

    Article  CAS  Google Scholar 

  86. Wierup M, Wahlströmb H, Engströmb B (1992) Experience of a 10-year use of competitive exclusion treatment as part of the Salmonella control programme in Sweden. Int J Food Microbiol 15(3–4):287–291

    Article  CAS  Google Scholar 

  87. Oliveira GH, Berchieri A Jr, Barrow PA (2000) Prevention of Salmonella infection by contact using intestinal flora of adults birds and/or a mixture of organic acids. Braz J Microbiol 31:116–120

    Article  Google Scholar 

  88. Soerjadi AS (1981) Some measurements of protection against paratyphoid Salmonella and Escherichia coli by competitive exclusion in chickens. Avian Dis 25:706–712

    Article  CAS  Google Scholar 

  89. Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:4

    Google Scholar 

  90. Irshad UH, Waqas NC, Mah ANA, Saadia A, Ishtiaq Q (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9:1–9

    Google Scholar 

  91. Sillankorva S, Pleteneva E, Shaburova O, Santos S, Carvalho C, Azeredo J, Krylov V (2010) Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry. J Appl Microbiol 108:1175–1186

    Article  CAS  Google Scholar 

  92. Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, Ho YW (2014) Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int J Food Microbiol 172:92–101

    Article  CAS  Google Scholar 

  93. Clavijo V, Baquero D, Hernandez S, Farfan JC, Arias J, Arévalo A, Donado-Godoy P, Vives-Flores M (2019) Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poult Sci 98(10):5054–5063

    Article  CAS  Google Scholar 

  94. EFSA, European Centre for Disease Prevention and Control (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15:e05077

    Google Scholar 

  95. Seys SA, Sampedro F, Hedberg CW (2017) Assessment of meat and poultry product recalls due to Salmonella contamination: product recovery and illness prevention. J Food Prot 80:1288–1292

    Article  Google Scholar 

  96. EFSA (2007) The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA J 130:23–106

    Google Scholar 

  97. Guan J, Grenier C, Brooks BW (2006) In vitro study of Salmonella enteritidis and Salmonella Typhimurium definitive type 104: survival in egg albumen and penetration through the vitelline membrane. Poult Sci 85:1678–1681

    Article  CAS  Google Scholar 

  98. Gole VC, Chousalkar KK, Roberts JR, Sexton M, May D, Tan J, Kiermeier A (2014) Effect of egg washing and correlation between eggshell characteristics and egg penetration by various Salmonella Typhimurium strains. PLoS One 9(3):e90987

    Article  Google Scholar 

  99. Advisory Committee on the Microbiological Safety of Food (2001) Second report on Salmonella in eggs. The Stationery Office. ISBN 0-11-322466-4

    Google Scholar 

  100. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA (2012) Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379(9835):2489–2499

    Article  Google Scholar 

  101. Elkenany RM, Eladl AH, El-Shafei RA (2018) Genetic characterization of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. J Glob Antimicrob Resist 14:202–208

    Article  Google Scholar 

  102. Cohen E, Davidovich-Cohen M, Rokney A, Valinsky L, Rahav G, Gal-Mor O (2018) Epidemiological and genetic characterization of multidrug-resistant Salmonella in the poultry and the clinical sectors in Israel. Abstract. ISM annual meeting, 3–4 July, Ben-Gurion University of the Negev, Beer-Sheva

    Google Scholar 

  103. Weinberger M, Solnik-Isaac H, Shachar D, Reisfeld A, Valinsky L, Andorn N, Agmon V, Yishai R, Bassal R, Fraser A, Yaron S, Cohen D (2006) Salmonella Enterica serotype Virchow: epidemiology, resistance patterns and molecular characterisation of an invasive Salmonella serotype in Israel. Clin Microbiol Infect 2(10):999–1005

    Article  Google Scholar 

  104. CDC (2018) Outbreak of multidrug-resistant Salmonella infections linked to raw chicken products. Centers for Disease Control and Prevention, Atlanta. https://www.cdc.gov/Salmonella/infantis-10-18/index.html

    Google Scholar 

  105. Pate M, Mičunovič J, Golob M, Vestby LK, Ocepek M (2019) Salmonella Infantis in broiler flocks in Slovenia: the prevalence of multidrug resistant strains with high genetic homogeneity and low biofilm-forming ability. Biomed Res Int 2019:4981463–4981413

    Article  Google Scholar 

  106. Vinueza-Burgos C, Cevallos M, RonGarrido L, Bertrand S, De Zutter L (2016) Prevalence and Diversity of Salmonella Serotypes in Ecuadorian Broilers at Slaughter Age. PLoS ONE 11(7). e0159567:1–12

    Google Scholar 

  107. Gal-Mor O, Valinsky L, Weinberger M, Guy S, Jaffe J, Schorr YI, Raisfeld A, Agmon V, Nissan I (2010) Multidrug-resistant Salmonella enterica serovar Infantis, Israel. Emerg Infect Dis 16(11):1754–1757

    Article  CAS  Google Scholar 

  108. Reitler R (1953) VI congress. Int di Mirobiologic, Roma 3:961–962

    Google Scholar 

  109. Singer N, Weissman Y, Yom-Tov Y, Marder U (1977) Isolation of Salmonella Hessarek from starlings (Sturnus vulgaris). Avian Dis 21:117–119

    Article  CAS  Google Scholar 

  110. LaRock DL, Chaudhary A, Miller SI (2015) Salmonellae interactions with host processes. Nat Rev Microbiol 13(4):191–205

    Article  CAS  Google Scholar 

  111. Giannella RA (1996) Salmonella. In: Medical microbiology-NCBI Bookshelf. 2011. http://www.ncbi.nlm.nih.gov/books/NBK8435/

  112. Shivaprasad HL, Timoney JF, Morales S, Lucio B, Baker RC (1990) Pathogenesis of Salmonella enteritidis infection in laying chickens. I. Studies on egg transmission, clinical signs, fecal shedding, and serologic responses. Avian Dis 34:548–557

    Article  CAS  Google Scholar 

  113. Dhillon AS, Shivaprasad HL, Roy B, Alisantosa B, Schaberg D, Bandly D, Johnson S (2001) Pathogenicity of environmental origin Salmonellas in specific pathogen-free chicks. Poult Sci 80:1323–1328

    Article  CAS  Google Scholar 

  114. Hoop RK, Pospischil A (1993) Bacteriological, serological, histological and immunohistochemical findings in laying hens with naturally acquired Salmonella enteritidis phage type 4 infection. Vet Rec 133:391–393

    Article  CAS  Google Scholar 

  115. Roy P, Dhillon AS, Shivaprasad HL, Schaberg DM, Bandly D, Johnson S (2001) Pathogenicity of different serogroups of avian Salmonellae in specific-pathogen-free chickens. Avian Dis 45:922–937

    Article  CAS  Google Scholar 

  116. He GZ, Tian WY, Qian N, Cheng AC, Deng SX (2010) Quantitative studies of the distribution pattern for Salmonella Enteritidis in the internal organs of chicken after oral challenge by a real-time PCR. Vet Res Commun 34(8):669–676

    Article  CAS  Google Scholar 

  117. Fowl typhoid and pullorum disease (2019). www.cfsph.iastate.edu

  118. Shivaprasad L (2000) Fowl typhoid and pullorum disease. Rev Sci Tech Off Int Epiz 19(2):405–424

    Article  CAS  Google Scholar 

  119. Sigognault Flochlay A, Thomas E, Sparagano O (2017) Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasit Vectors 10:357

    Article  Google Scholar 

  120. Tunca R, Toplu N, Kırkan S, Avci H, Aydoğan A, Epikmen ET, Tekbiyik S (2012) Pathomorphological, immunohistochemical and bacteriological findings in budgerigars (Melopsittacus undulatus) naturally infected with S. Gallinarum. Avian Pathol 41(2):203–209

    Article  CAS  Google Scholar 

  121. Meštrović T (2018) News medical life sciences. https://www.news-medical.net/health/Salmonella-Genetics.aspx

  122. Jennings E, Thurston TLM, Holden DW (2017) Salmonella SPI-2 type III secretionsystem effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 22:217–231

    Article  CAS  Google Scholar 

  123. Rychlik I, Karasova D, Sebkova A, Volf J, Sisak F, Havlickova H, Kummer V, Imre A, Szmolka A, Nagy B (2009) Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9:268

    Article  Google Scholar 

  124. Kaniga K, Trollinger D, Galan JE (1995) Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J Bacteriol 177:7078–7085

    Article  CAS  Google Scholar 

  125. Chen LM, Kaniga K, Galan JE (1996) Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol 21:1101–1115

    Article  CAS  Google Scholar 

  126. Cirillo DM, Valdivia RH, Monack DM, Falkow S (1998) Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 30:175–188

    Article  CAS  Google Scholar 

  127. Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo FJ (1998) Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N Engl J Med 338:1333–1338

    Article  CAS  Google Scholar 

  128. Giannella RA (1996) Medical microbiology-NCBI Bookshelf

    Google Scholar 

  129. Salmonella (2011) www.ncbi.nlm.nih.gov/books/NBK8435

  130. Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6(1):53–66

    Article  CAS  Google Scholar 

  131. Diacovich L, Lucía L, Tomassetti M, Méresse S, Gramajoa H (2017) The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole. Virulence 8(6):975–992

    Article  CAS  Google Scholar 

  132. Cano DA, Pucciarelli MG, García-del Portillo F, Casadesús J (2002) Role of the RecBCD recombination pathway in Salmonella virulence. J Bacteriol 184(2):592–595

    Article  CAS  Google Scholar 

  133. Jajere SM (2019) A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World 12(4):504–521

    Article  Google Scholar 

  134. Lee MD, Curtiss R, Peay T (1996) The effect of bacterial surface structures on the pathogenesis of Salmonella Typhimurium infection in chickens. Avian Dis 40(1):28–36

    Article  CAS  Google Scholar 

  135. Daigle F (2008) Typhi genes expressed during infection or involved in pathogenesis. J Infect Dev Ctries 2(6):431–437

    Article  CAS  Google Scholar 

  136. Dhanani AS, Block G, Dewar K, Forgetta V, Topp E, Beiko RG, Diarra MS (2015) Genomic comparison of non-typhoidal Salmonella enterica serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky isolates from broiler chickens. PLoS One 10(6):e0128773

    Article  Google Scholar 

  137. Kaur J, Jain SK (2012) Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res 167(4):199–210

    Article  CAS  Google Scholar 

  138. Schmidt H, Hensel M (2004) Pathogenicity Islands in bacterial pathogenesis. Clin Microbiol Rev 17(1):14–56

    Article  CAS  Google Scholar 

  139. Van Asten AJA, Van Dijk JE (2005) Distribution of “classic” virulence factors among Salmonella spp. FEMS Immunol Med Microbiol 44(3):251–259

    Article  Google Scholar 

  140. Leung KY, Siame BA, Snowball H, Mok YK (2011) Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol 14(1):9–15

    Article  CAS  Google Scholar 

  141. Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, Mottaz HM, Rue J, Adkins JN, Heffron F, Smith RD (2008) Proteomics analysis of the causative agent of typhoid fever. J Proteome Res 7(2):546–557

    Article  CAS  Google Scholar 

  142. Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, Droleskey R, Zhang S, Figueiredo J, Khare S, Nunes J, Adams LG, Tsolis RM, Bäumler AJ (2003) The use of flow cytometry to detect expression of subunits encoded by Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 48(5):1357–1376

    Article  CAS  Google Scholar 

  143. Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J (2013) Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 77(4):582–607

    Article  Google Scholar 

  144. Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Van Immerseel F (2009) The Salmonella Enteritidis lipopolysaccharide biosynthesis gene rfbH is required for survival in egg albumen. Zoonosis Public Health 56(3):145–149

    Article  CAS  Google Scholar 

  145. Dhowlaghar N, Abeysundara PDA, Nannapaneni R, Schilling MW, Chang S, Cheng WH, Sharma CS (2018) Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions. Food Microbiol 70:172–180

    Article  Google Scholar 

  146. Milanov D, Ljubojevic D, Cabarkapa I, Karabasil N, Velhner M (2017) Biofilm as risk factor for Salmo-2458 nella contamination in various stages of poultry production. Europ Poult Sci 81:1–14

    Google Scholar 

  147. MacKenzie KD, Palmer MB, Köster WL, White AP (2017) Examining the link between biofilm formation and the ability of pathogenic Salmonella strains to colonize multiple host species. Front Vet Sci 4:138

    Article  Google Scholar 

  148. Thompson A, Fulde M, Tedin K (2018) The metabolic pathways utilized by Salmonella Typhimurium during infection of host cells. Environ Microbiol Rep 10(2):140–154

    Article  Google Scholar 

  149. Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, Cheng A (2017) Two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391

    Article  Google Scholar 

  150. Hassan JO, Curtiss R III (1994) Development and evaluation of an experimental vaccination program using a live avirulent Salmonella typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infect Immun 62:5519–5527

    Article  CAS  Google Scholar 

  151. Heithoff DM, House JK, Thomson PC, Mahan MJ (2015) Development of a Salmonella cross-protective vaccine for food animal production systems. Vaccine 33:100–107

    Article  CAS  Google Scholar 

  152. Bridge DR, Whitmire JM, Gilbreath JJ, Metcalf ES, Merrell DS (2015) An enterobacterial common antigen mutant of Salmonella enterica serovar Typhimurium as a vaccine candidate. Int J Med Microbiol 305:511–522

    Article  CAS  Google Scholar 

  153. Huang C, Liu Q, Luo Y, Li P, Liu Q, Kong Q (2016) Regulated delayed synthesis of lipopolysaccharide and enterobacterial common antigen of Salmonella Typhimurium enhances immunogenicity and cross-protective efficacy against heterologous Salmonella challenge. Vaccine 34:4285–4292

    Article  CAS  Google Scholar 

  154. Gayet R, Bioley G, Rochereau N, Paul S, Corthésy B (2017) Vaccination against Salmonella infection: the mucosal way. Microbiol Mol Biol Rev 81(3):1–26

    Article  Google Scholar 

  155. Deb R, Dey S, Madhan MC, Gaikwad S, Kamble N, Khulape SA, Gupta SK, Maity HK, Pathak DC (2015) Development and evaluation of a Salmonella Typhimurium flagellin based chimeric DNA vaccine against infectious bursal disease of poultry. Res Vet Sci 102:7–14

    Article  CAS  Google Scholar 

Further Reading: Books and Reviews

Additional Information for Molecular Mechanisms of Infection Found in:

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lublin, A., Farnoushi, Y. (2023). Salmonella in Poultry and Other Birds. In: Shulman, L.M. (eds) Infectious Diseases. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2463-0_1092

Download citation

Publish with us

Policies and ethics