Skip to main content

Quantitative Methods Applied to Animal Breeding

  • Reference work entry
  • First Online:
Animal Breeding and Genetics
  • Originally published in

Glossary

Bayesian inference :

Statistical inference approach based on the combination of prior information and evidence (i.e., observations) for estimation or hypothesis testing. In Bayesian analysis the prior information is updated with the experimental data to generate the posterior distribution of unknowns, such as model parameters. The name “Bayesian” comes from the use of the Bayes’ theorem in the updating process.

Breeding value :

A measure of the genetic merit of an individual for breeding purposes.

Genetic correlation :

The correlation between traits that is caused by genetic as opposed to environmental factors. Genetic correlations can be caused by pleiotropy (genes that affect multiple traits simultaneously) or by linkage disequilibrium between genes affecting the different traits.

Genomic selection :

Genomic selection is a form of marker-assisted selection in which genetic markers covering the whole genome are used such that all quantitative trait loci (QTL) are in linkage...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Lush JL (1994) The genetics of populations. Prepared for publication by A. B. Chapman and R. R. Shrode, with an addendum by J. F. Crow. Special Report 94, College of Agriculture, Iowa State University, Ames, IA

    Google Scholar 

  2. Bulmer MG (1985) The mathematical theory of quantitative genetics. Clarendon, Oxford

    Google Scholar 

  3. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow

    Google Scholar 

  4. Lynch M, Walsh B (1998) Genetic analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  5. Hill WG (1969) On the theory of artificial selection in finite populations. Genet Res 13:143–163

    Article  PubMed  CAS  Google Scholar 

  6. Havenstein B, Ferket PR, Qureshi MA (2003) Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 82:1509–1518

    Article  PubMed  CAS  Google Scholar 

  7. Bourdon RM (2000) Understanding animal breeding, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  8. Crow J, Kimura M (1970) An introduction to populations genetics theory. Haraper and Row, New York

    Google Scholar 

  9. Shook GE (2006) Major advances in determining appropriate selection goals. J Dairy Sci:1349–1361

    Google Scholar 

  10. Henderson CR (1949) Estimation of changes in herd environment. J Dairy Sci 32:709

    Google Scholar 

  11. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  PubMed  CAS  Google Scholar 

  12. Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

    Google Scholar 

  13. Gianola D, Rosa GJM (2015) One hundred years of statistical developments in animal breeding. Book Ser Annu Rev Anim Biosci 3:19–56

    Article  Google Scholar 

  14. Fernando RL, Grossman M (1989) Marker-assisted selection using best linear unbiased prediction. Genet Sel Evol 21:467–477

    Article  PubMed Central  Google Scholar 

  15. Yu J et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  16. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

  17. Rosa GJM, Steibel JP, Tempelman RJ (2005) Reassessing design and analysis of two-color microarray experiments using mixed effects models. Comp Funct Genomics 6:123–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Steibel JP, Poletto R, Coussens PM, Rosa GJM (2009) A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94:146–152

    Article  PubMed  CAS  Google Scholar 

  19. Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309

    Google Scholar 

  20. Henderson CR (1953) Estimation of variance and covariance components. Biometrics 9:226

    Article  Google Scholar 

  21. Rao CR (1971) Estimation of variance and covariance components MINQUE theory. J Multivar Anal 1:257–275

    Article  Google Scholar 

  22. Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72(358):320–338

    Article  Google Scholar 

  23. Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58(3):545–554

    Article  Google Scholar 

  24. Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, New York

    Book  Google Scholar 

  25. Littell RC, Miliken GA, Stroup WW, Wolfinger RD (2006) SAS system for mixed models, 2nd edn. SAS Institute Inc., Cary

    Google Scholar 

  26. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer, New York

    Book  Google Scholar 

  27. Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New York

    Book  Google Scholar 

  28. Verbeke G, Molenberghs G (1997) Linear mixed models in practice: a SAS-oriented approach. Lecture notes in statistics 126. Springer, New York

    Book  Google Scholar 

  29. Wright S (1921) Systems of mating. I. The biometric relations between parents and offspring. Genetics 6:111–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Henderson CR (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32:69–83

    Article  Google Scholar 

  31. Quaas RL (1976) Computing the diagonal elements of a large numerator relationship matrix. Biometrics 32:949–953

    Article  Google Scholar 

  32. Henderson CR, Quaas RL (1976) Multiple trait evaluation using relatives’ records. J Anim Sci 43:1188–1197

    Article  Google Scholar 

  33. Schaeffer LR (1984) Sire and cow evaluation under multiple trait models. J Dairy Sci 67:1567–1580

    Article  Google Scholar 

  34. Thompson R (1977) Estimation of quantitative genetic parameters. In: Pollak E, Kempthorne O, Bailey TB (eds) Proceedings of the international conference on quantitative genetics. Iowa State University Press, Ames, pp 639–657

    Google Scholar 

  35. Meyer K (1985) Maximum-likelihood estimation of variance-components for a multivariate mixed model with equal design matrices. Biometrics 41(153):1985

    Google Scholar 

  36. Ducrocq V, Besbes B (1993) Solution of multiple trait animal models with missing data on some traits. J Anim Breed Genet 110:81–92

    Article  PubMed  CAS  Google Scholar 

  37. Quaas RL, Pollak EJ (1981) Modified equations for sire models with groups. J Dairy Sci 64:1868–1872

    Article  Google Scholar 

  38. Quaas RL, Pollak EJ (1980) Mixed model methodology for farm and ranch beef cattle testing programs. J Anim Sci 51:1277–1287

    Article  Google Scholar 

  39. Misztal I, Gianola D (1988) Indirect solution of mixed model equations. J Dairy Sci 77(Suppl. 2):99–106

    Article  Google Scholar 

  40. Schaeffer LR, Kennedy BW (1986) Computing solutions to mixed model equations. In: 3rd world congr genet appl livest prod, vol XII, pp 382–393

    Google Scholar 

  41. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Haley CS, Knott SA (1992) A simple regression method to for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  43. Haley CS, Knott SA, Elsen J-M (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pérez-Enciso M, Misztal I (2004) Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20(16):2792–2798

    Article  PubMed  Google Scholar 

  45. Meuwissen THE, Goddard ME (2000) Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155:421–430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pérez-Enciso M (2003) Fine mapping of complex trait genes combining pedigree and linkage disequilibrium information: a Bayesian unified framework. Genetics 163:1497–1510

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3(1):22–32

    Article  PubMed  CAS  Google Scholar 

  49. Dekkers JCM, van Arendonk JAM (1998) Optimizing selection for quantitative traits with information on an identified locus in outbred populations. Genet Res 71(3):257–275

    Article  Google Scholar 

  50. Manfredi E, Barbieri M, Fournet F, Elsen JM (1998) A dynamic deterministic model to evaluate breeding strategies under mixed inheritance. Genet Selet Evol 30:127–148

    Article  Google Scholar 

  51. Chakraborty R, Moreau L, Dekkers JCM (2002) A method to optimize selection on multiple identified quantitative trait loci. Genet Sel Evol 34(2):145–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Goddard ME (1992) A mixed model for analyses of data on multiple genetic-markers. Theor Appl Genet 83:878–886

    Article  PubMed  CAS  Google Scholar 

  53. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  PubMed  CAS  Google Scholar 

  54. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  PubMed  CAS  Google Scholar 

  55. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Whittaker JC, Thompson R, Visscher PM (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  PubMed  CAS  Google Scholar 

  57. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58:267–288

    Google Scholar 

  58. Gianola D, Perez-Enciso M, Toro MA (2003) On marker-assisted prediction of genetic value: beyond the ridge. Genetics 163:347–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163(2):789–801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. ter Braak CJF, Boer MP, Bink MCAM (2005) Extending Xu’s Bayesian model for estimating polygenic effects using markers of the entire genome. Genetics 170(3):1435–1438

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference, and predictions. Springer

    Book  Google Scholar 

  62. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  PubMed  CAS  Google Scholar 

  63. Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 92:4648–4655

    Article  PubMed  CAS  Google Scholar 

  64. Calus MPL, Veerkamp RF (2007) Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 124:362–368

    Article  PubMed  CAS  Google Scholar 

  65. Muir WM (2007) Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 124:342–355

    Article  PubMed  CAS  Google Scholar 

  66. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor J, Schenkel FS (2009) Reliability of genomic predictions for North American dairy bulls. J Dairy Sci 92:16–24

    Article  PubMed  CAS  Google Scholar 

  67. Weigel KA, de los Campos G, González-Recio O, Naya H, Wu XL, Long N, GJM R, Gianola D (2009) Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers. J Dairy Sci 92:5248–5257

    Article  PubMed  CAS  Google Scholar 

  68. Henderson CR (1985) Best linear unbiased prediction of non-additive genetic merits in non-inbred populations. J Anim Sci 60:111–117

    Article  Google Scholar 

  69. Hoeschele I, VanRaden PM (1991) Rapid inverse of dominance relationship matrices for noninbred populations by including sire and dam subclass effects. J Dairy Sci 74:557–569

    Article  PubMed  CAS  Google Scholar 

  70. Gianola D (1982) Theory and analysis of threshold characters. J Anim Sci 54:1079–1096

    Article  Google Scholar 

  71. Gianola D, Foulley JL (1983) Sire evaluation for ordered categorical-data with a threshold-model. Genet Sel Evol 15(2):201–223

    Article  CAS  Google Scholar 

  72. Tempelman RJ, Gianola D (1996) A mixed effects model for overdispersed count data in animal breeding. Biometrics 52:265–279

    Article  Google Scholar 

  73. Strandén I, Gianola D (1998) Attenuating effects of preferential treatment with Student-t mixed linear models: a simulation study. Genet Sel Evol 31:25–42

    Article  Google Scholar 

  74. Rosa GJM, Padovani CR, Gianola D (2003) Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biom J 45(5):573–590

    Article  Google Scholar 

  75. Ducrocq V, Casella G (1996) A Bayesian analysis of mixed survival models. Genet Sel Evol 28(6):505–529

    Article  PubMed Central  Google Scholar 

  76. Varona L (1997) Multiple trait genetic analysis of underlying biological variables of production functions. Livest Prod Sci 47:201–209

    Article  Google Scholar 

  77. Forni S, Piles M, Blasco A et al (2009) Comparison of different nonlinear functions to describe Nelore cattle growth. J Anim Sci 87(2):496–506

    Article  PubMed  CAS  Google Scholar 

  78. Gianola D, Fernando RL (1986) Bayesian methods in animal breeding theory. J Anim Sci 63:217–244

    Article  Google Scholar 

  79. Shoemaker JS, Painter IS, Weir BS (1999) Bayesian statistics in genetics – a guide for the uninitiated. Trends Genet 15:354–358

    Article  PubMed  CAS  Google Scholar 

  80. Blasco A (2001) The Bayesian controversy in animal breeding. J Anim Sci 79(8):2023–2046

    Article  PubMed  CAS  Google Scholar 

  81. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261

    Article  PubMed  CAS  Google Scholar 

  82. Yi N, Xu S (2008) Bayesian Lasso for quantitative trait loci mapping. Genetics 179:1045–1055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gianola D, de los Campos G, Hill WG et al (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183(1):347–363

    Article  PubMed  PubMed Central  Google Scholar 

  84. De los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes J (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigrees. Genetics 182:375–385

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761–1776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gianola D, van Kaam JBCHM (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  PubMed Central  Google Scholar 

  87. Long N, Gianola D, Rosa GJM, Weigel KA, Avendaño S (2007) Machine learning procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet 124(6):377–389

    Article  PubMed  CAS  Google Scholar 

  88. González-Recio O, Gianola D, Long N, Weigel KA, Rosa GJM, Avendano S (2008) Nonparametric methods for incorporating genomic information into genetic evaluations: an application to mortality in broilers. Genetics 178(4):2305–2313

    Article  PubMed  PubMed Central  Google Scholar 

  89. De los Campos G, Gianola D, Rosa GJM (2009) The linear model of quantitative genetics is a reproducing kernel Hilbert spaces regression. J Anim Sci 87:1883–1887

    Article  Google Scholar 

  90. Gianola D, Okut H, Weigel KA, Rosa GJM (2011) Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet 12:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Okut H, Gianola D, Rosa GJM, Weigel KA (2011) Prediction of body mass index in mice using dense molecular markers and a regularized neural network. Genet Res 93:189–201

    Article  CAS  Google Scholar 

  92. Koltes JE, Cole JB, Clemmens R et al (2019) A vision for development and utilization of high-throughput phenotyping and big data analytics in livestock. Front Genet 10:1197

    Article  PubMed  PubMed Central  Google Scholar 

  93. Silva FF, Morota G, Rosa GJM (2021) High-throughput phenotyping in the genomic improvement of livestock. Front Genet 12:707343. https://doi.org/10.3389/fgene.2021.707343

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fernandes AFA, Dórea JRR, Rosa GJM (2020) Image analysis and computer vision applications in animal sciences: an overview. Front Vet Sci 7:551269

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bresolin T, Dórea JRR (2020) Infrared spectrometry as a high-throughput phenotyping technology to predict complex traits in livestock systems. Front Genet 11:923. https://doi.org/10.3389/fgene.2020.00923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  97. Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

Books and Reviews

  • Chapman AB (1980) General and quantitative genetics. World animal science series. Elsevier, Amsterdam

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Gondro C, van der Werf J, Hayes B (2013) Genome-wide association studies. Springer, New York

    Book  Google Scholar 

  • Lange K (2002) Mathematical and statistical methods for genetic analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Liu BH (1998) Statistical genomics. CRC Press, Boca Raton

    Google Scholar 

  • Mrode R (2005) Linear models for the prediction of animal breeding values, 2nd edn. CAB Int, New York

    Book  Google Scholar 

  • Ott J (1991) Analysis of human genetic linkage. Johns Hopkins

    Google Scholar 

  • Sham P (1998) Statistics in human genetics. Arnold

    Google Scholar 

  • Van Vleck LD (1993) Selection index and introduction to mixed model methods for genetic improvement of animals. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme J. M. Rosa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rosa, G.J.M. (2023). Quantitative Methods Applied to Animal Breeding. In: Spangler, M.L. (eds) Animal Breeding and Genetics. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2460-9_334

Download citation

Publish with us

Policies and ethics