Skip to main content

Poultry Breeding

  • Reference work entry
  • First Online:
Animal Breeding and Genetics
  • Originally published in

Glossary

Breeding:

Identifying and mating the best animals to produce the next generation.

Input resources::

Feed, water, energy, chemical, and medical products for production, disease control, and hygiene.

Poultry greenhouse gas:

Poultry house gases (ammonia, nitrous oxide, carbon dioxide, and methane) that are associated with poultry production. These gases emit radiant energy causing greenhouse effects.

Genetic diversity:

Differences in genotypes among individuals within a population, subpopulations, or breeds.

Poultry house pollutants:

Excessive nitrogen and phosphorus in poultry waste, and particulate matter circulating in the ambient environment of poultry houses.

Definition of the Subject

Sustainable poultry breeding is genetic improvement that will deliver positive genetic gains in poultry meat and eggs, maintain genetic diversity, and enhance welfare, wellbeing, and reproductive capacity of future generations of animals without significant carbon footprint or negative impact...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Aggrey SE, González-Cerón F, Rekaya R (2017) Genes associated with functional traits in poultry: implications for sustainable genetic improvement. In: Applegate T (ed) Achieving sustainable production of poultry meat, Breeding and nutrition, vol 2. Burleigh Dodds Science Publ Ltd, Cambridge, pp 3–24

    Chapter  Google Scholar 

  2. Putman B, Christie M, Thoma GJ (2019) Improving the environmental performance of pig and poultry production. Burleigh Dodds Science Publ Ltd, Cambridge

    Book  Google Scholar 

  3. https://www.chickencheck.in/sustainability/

  4. https://www.nationalchickencouncil.org/wp-content/uploads/2021/09/Broiler-Production-System-LCA_2020-Update.pdf

  5. Aggrey SE, Karnuah AB, Sebastian B, Anthony NB (2010) Genetic properties of feed efficiency parameters in meat-type chickens. Genet Sel Evol 42:1–5

    Article  Google Scholar 

  6. Pelleteir N, Ibarburu M, Xin H (2014) Comparison of the environmental footprint of the egg industry in the United States in 1960 and 2010. Poult Sci 93:241–255

    Article  Google Scholar 

  7. Kalhor T, Rajabipour A, Akram A, Sharifi M (2016) Environmental impact assessment of chicken meat production using life cycle assessment. Inf Process Agric 3:262–271

    Google Scholar 

  8. Harper LA, Ritz CW, Flesch TK (2021) Ammonia emissions and dispersion from broiler production. J Environ Qual 50:558–566

    Article  PubMed  CAS  Google Scholar 

  9. Tamminga S (1992) Gaseous pollutants produced by farm animal enterprises. In: Philips, Piggins D (eds) Farm animals and the environment. CABI, Wallingford, pp 345–357

    Google Scholar 

  10. Koerkamp PWG (1994) Review on ammonia emission from housing systems for laying hens in relation to sources, processes, building design and manure handling. J Agric Eng Res 59:73–87

    Article  Google Scholar 

  11. Aggrey SE, Lee J, Karnuah AB, Rekaya R (2014) Transcriptomic analysis of genes in the nitrogen recycling pathway of meat-type chickens divergently selected for feed efficiency. Anim Genet 45:215–222

    Article  PubMed  CAS  Google Scholar 

  12. Monteny GJ, Groenestein CM, Hilhorst MA (2001) Interaction and coupling between emission of methane and nitrous oxide from animal husbandry. Nutr Cycl Agroecosyst 60:123–132

    Article  CAS  Google Scholar 

  13. Misiukiewicz A, Gao M, Filipiak W, Cieslak A, Patra K, Szumacher-Strabel M (2020) Review: methanogens and methane production in the digestive systems of nonruminant farm animals. Animal. https://doi.org/10.1016/j.animal.2020.100060

  14. Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, Konkel ME, Angly F, Dinsdale EA, Edwards RA, Nelson KE, White BA (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken caecum microbiome. PLoS One 3, Article 0002945

    Google Scholar 

  15. Carlile FS (1984) Ammonia in poultry houses: a literature review. Worlds Poult Sci J 40:99–113

    Article  Google Scholar 

  16. Ritz CW, Fairchild BD, Lacy MP (2004) Implications of ammonia production and emissions from commercial poultry facilities: a review. J Appl Poult Res 13:684–692

    Article  Google Scholar 

  17. Lonc E, Plewa K (2010) Microbiological air contamination in poultry houses. Polish J Environ Stud 19:15–19

    Google Scholar 

  18. Reece FN, Lott BD, Deaton JW (1980) Ammonia in the atmosphere during brooding affect performance of broiler chickens. Poult Sci 59:486–488

    Article  CAS  Google Scholar 

  19. Moum SG, Seltzer W, Goldhaft TM (1969) A simple method of determining concentrations of ammonia in animal quarters. Poult Sci 48:347–348

    Article  PubMed  CAS  Google Scholar 

  20. International Programme on Chemical Safety (IPCS) (1986) Ammonia. Environmental health criteria 54. World Health Organization, Geneva

    Google Scholar 

  21. Bullis KL, Snoeyenbos GH, van Roekel H (1950) A keratoconjunctivitis in chickens. Poult Sci 29:386–389

    Article  Google Scholar 

  22. Charles DR, Payne CG (1964) The effects of ammonia on the performance of laying hens. In: Proceedings of the 2nd European Poult Conference, Bologna, pp 100–112

    Google Scholar 

  23. Cambra-López M, Hermosilla T, Lai HTL, Aarnink AJA, Ogink NWM (2011) Particulate matter emitted from poultry and pig houses: source identification and quantification. Trans ASABE 54:629–642

    Article  Google Scholar 

  24. Qi R, Manbeck HB, Maghirang RG (1992) Dust net generation rate in a poultry layer house. Trans ASAE 35:1639–1645

    Article  Google Scholar 

  25. Brunekreef B, Holgate ST (2002) Air pollution and health. Review. Lancet 360:1233–1243

    Article  PubMed  CAS  Google Scholar 

  26. Franchini M, Mannuci PM (2007) Short-term effects of air pollution on cardiovasculardiseases: outcome and mechanisms. J Thromb Haemost 5:2169–2174

    Article  PubMed  CAS  Google Scholar 

  27. Winkel A, Cambra-Lopez M, Koerkamp PWG, Ogink NWM, Aarnink AJA (2014) Abatement of particulate matter emission from experimental broiler housing using an optimized oil spraying method. Trans ASABE 57:1853–1864

    Google Scholar 

  28. Valavanidis AK, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health Part C 26:339–362

    Article  CAS  Google Scholar 

  29. Johnson RW, Curtis SE, Shank RD (1991) Effects of chick performance of ammonia and heat stressors in various combination sequences. Poult Sci 70:1132

    Article  PubMed  CAS  Google Scholar 

  30. Applegate TJ, Potturi PV, Angel R (2003) Model for estimating poultry manure nutrient excretion: a mass model approach. In: The Animal, Agriculture and Food Processing Wastes Proceedings of the 9th International Symposium, pp 296–302

    Google Scholar 

  31. Ankra-Badu GA, Pesti GM, Aggrey SE (2010) Genetic interrelationships among phosphorus, nitrogen, calcium and energy bioavailability in a growing chicken population. Poult Sci 89:2351–2355

    Article  PubMed  CAS  Google Scholar 

  32. Ravindran V, Ravindran G, Sivalogan S (1994) Total and phytate phosphorous contents of various foods and feedstuffs of plant origin. Food Chem 50:113–136

    Article  Google Scholar 

  33. Heuser GF, Norris LC, McGinnis J, Scott ML (1943) Further evidence of the need for supplementing soybean meal chick rations with phosphorous. Poult Sci 22:269–270

    Article  CAS  Google Scholar 

  34. Ravindran V, Bryden WL, Kornegay ET (1995) Phytates: occurrence, bioavailability, and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143

    Google Scholar 

  35. Edwards HM Jr (1983) Phosphorous I. Effect of breed and strain on utilization of sub-optimal level of phosphorous in ration. Poult Sci 62:77–84

    Article  PubMed  CAS  Google Scholar 

  36. Edwards HM Jr (1993) Dietary 1,25-dihydroxycholecaliferol supplementation increases natural phytate phosphorous utilization in chickens. J Nutr 123:567–577

    Article  PubMed  CAS  Google Scholar 

  37. Shirley RB, Edwards HM Jr (2003) Graded levels of phytase past industry standards improves broiler performance. Poult Sci 82:671–680

    Article  PubMed  CAS  Google Scholar 

  38. Zhang W, Aggrey SE, Pesti GM, Edwards HM Jr, Bakalli RI (2003) Genetics of phytate phosphorus bioavailability: heritability and genetic correlations with growth and feed utilization traits in a randombred chicken population. Poult Sci 82:1075–1079

    Article  PubMed  CAS  Google Scholar 

  39. Ankra-Badu GA, Aggrey SE, Pesti GM, Bakalli RI, Edwards HM (2004) Modeling of parameters affecting phytate phosphorus bioavailability in growing birds. Poult Sci 83:1083–1088

    Article  PubMed  CAS  Google Scholar 

  40. Aggrey SE, Zhang W, Bakalli RI, Pesti GM, Edwards HM Jr (2002) Genetics of Phytate phosphorus bioavailability in poultry. In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production Montpellier France, pp 277–279

    Google Scholar 

  41. Zhang W, Aggrey SE, Pesti GM, Bakalli RI, Edwards HM Jr (2005) Genetic analysis on the direct response to divergent selection for phytate phosphorus bioavailability in a randombred chicken population. Poult Sci 84:370–375

    Article  PubMed  CAS  Google Scholar 

  42. Zhang W, Aggrey SE, Pesti GM, Bakalli RI, Edwards HM (2005) Correlated responses to divergent selection for phytate phosphorus bioavailability in a randombred chicken population. Poult Sci 84:536–542

    Article  PubMed  CAS  Google Scholar 

  43. Aggrey SE, Siegel PB, Rekaya R (2020) Breeding for sustainability and plasticity in functional traits: reality or fiction in the midst of conflicting interests. In: Aggrey SE, Zhou H, Tixier-Boichard M, Rhoads DD (eds) Advances in poultry genetics and genomics. Burleigh Dodds Science Publ, Cambridge

    Google Scholar 

  44. de Verdal H, Narcy A, Bastianelli D, Chapuis H, Même N, Urvoix S, Le Bihan-Duval E, Mignon-Grasteau S (2011) Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro – intestinal tract and digestive efficiency. BMC Genet 12(59)

    Google Scholar 

  45. Mignon-Grasteau S, Muley N, Bastianelli D, Gomez J, Peron A, Sellier N, Millet N, Besnard J, Hallouis JM, Carré B (2004) Heritability of digestibilities and divergent selection for digestion ability in growing chicks fed a wheat diet. Poult Sci 83:860–867

    Article  PubMed  CAS  Google Scholar 

  46. Mignon-Grasteau S, Lafeuille O, Dourmad JY, Hillion S, Arnould C, Phocas F, Bastianelli D, Carré B (2010) Consequences of selection for digestibility on feeding activity and excretion. In: XIII Eur Poult Conf, Tours

    Google Scholar 

  47. de Verdal H, Narcy A, Bastianelli D, Chapuis H, Même N, Urvoix S, Le Bihan-Duval E, Mignon-Grasteau S (2011) Improving the efficiency of feed utilization in poultry by selection. 2. Genetic parameters of excretion traits and correlations with anatomy of the gastro – intestinal tract and digestive efficiency. BMC Genet 12(71)

    Google Scholar 

  48. de Verdal H, Mignon-Grasteau S, Bastianelli D, Même N, Le Bihan-Duval E, Narcy A (2013) Reducing the environmental impact of poultry breeding by genetic selection. J Anim Sci 91:613–622

    Article  PubMed  Google Scholar 

  49. Juanchich A, Urvoix S, Hennequet-Antier C, Narcy A, Mignon-Grasteau S (2021) Phenotypic timeline of gastrointestinal tract development in broilers divergently selected for digestive efficiency. Poult Sci 100:1205–1212

    Article  PubMed  CAS  Google Scholar 

  50. Gibson JP, Wilton JW (1998) Defining multiple – trait objectives for sustainable genetic improvement. J Anim Sci 76:2303–2307

    Article  PubMed  CAS  Google Scholar 

  51. Hodges J (1987) Animal genetic resources: strategy for improved use and conservation, FAO Animal Production and Health Paper No. 66. FAO, Rome

    Google Scholar 

  52. Hill WG (2016) Is continued genetic improvement of livestock sustainable? Genetics 202:877–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Muir WH, Aggrey SE (2003) Poultry genetics, breeding and biotechnology. CABI Publishing, Wallingford

    Book  Google Scholar 

  54. Sandøe P, Nielsen BL, Christensen LG, Sørensen P (1999) Staying good while playing god – the ethics of breeding farm animals. Anim Welf 8:313–328

    PubMed  Google Scholar 

  55. Brascamp EW, Smith C, Guy DR (1985) Derivation of economic weights from profit equations. Anim Prod 40:175–180

    Google Scholar 

  56. Olesen I, Gjerde B, Groen AF (1999) Methodology for deriving non-market trait values in animal breeding goals for sustainable production systems. In: Proc Int Workshop on EU Concerted Action on Genetic Improvement of Functional Traits in Cattle, pp 13–21

    Google Scholar 

  57. FAO (2009) How to feed the world in 2050. FAO, Rome. Online. Available at http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Accessed 21 Oct 2021

  58. Hume DA, Whitelaw CBA, Archibald AL (2011) The future of animal production: improving productivity and sustainability. J Agric Sci 149:9–16

    Article  Google Scholar 

  59. Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ (2016) Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 9:31. https://doi.org/10.1186/s13072-016-0081-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel E. Aggrey .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aggrey, S.E., Rekaya, R. (2023). Poultry Breeding. In: Spangler, M.L. (eds) Animal Breeding and Genetics. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2460-9_1118

Download citation

Publish with us

Policies and ethics