Skip to main content

Energy Consumption of Connected and Automated Vehicles

  • Reference work entry
  • First Online:
Electric, Hybrid, and Fuel Cell Vehicles
  • Originally published in

Glossary

Automation:

The partial or complete execution of vehicle guidance tasks by technical systems instead of human drivers. Automation levels define the degrees to which vehicle systems take over the driving task.

Advanced Driver Assistance Systems (ADAS):

Electronic auxiliary systems in vehicles that improve safety and comfort by automating functions.

Automated Vehicle (AV):

Road vehicles with various assistance functions which control individual functions such as acceleration, braking, and steering up to a fully autonomous system. A fully automated vehicle allows driverless operation.

Connected and Automated Vehicle (CAV):

A road vehicle that is equipped with both connectivity and automation systems.

Connectivity/Connected Driving:

The integration of information from infrastructure, other vehicles, road users or service providers, and superordinated authorities such as traffic control centers through different types of communication. Infrastructure might include machine readable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Fraedrich E, Kröger L, Bahamonde-Birke F, et al (2017) Automatisiertes Fahren im Personen- und Güterverkehr. e-mobil BW GmbH, Landesagentur für Elektromobilität und Brennstoffzellentechnologie, Stuttgart

    Google Scholar 

  2. Sims R, Schaeffer R, Creutzig F et al (2014) Transport. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report on the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  3. Alonso Raposo M, Ciuffo B (2019) The future of road transport – implications of automated, connected, low-carbon and shared mobility. Publications Office of the European Union, Luxembourg

    Google Scholar 

  4. SAE International (2019) SAE J3016 automated-driving graphic. https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic. Accessed 18 Jul 2019

  5. Winner H, Wachenfeld W (2015) Auswirkungen des autonomen Fahrens auf das Fahrzeugkonzept. In: Maurer M, Gerdes JC, Lenz B, Winner H (eds) Autonomes Fahren. Springer, Berlin/Heidelberg, pp 265–285

    Chapter  Google Scholar 

  6. Schönberg T (2019) Autonomes Fahren – Wo geht die Reise hin? Marktübersicht zum autonomen Fahren. VDV-Zukunftskongress Autonomes Fahren im öffentlichen Verkehr, Berlin

    Google Scholar 

  7. Jittrapirom P, Caiati V, Feneri A-M et al (2017) Mobility as a service: a critical review of definitions, assessments of schemes, and key challenges. Urban Plan 2:13. https://doi.org/10.17645/up.v2i2.931

    Article  Google Scholar 

  8. Tesla (2019) Future of driving. In: Tesla. https://www.tesla.com/autopilot. Accessed 31 Jul 2019

  9. Taiebat M, Brown AL, Safford HR et al (2018) A review on energy, environmental, and sustainability implications of connected and automated vehicles. Environ Sci Technol:11449–11465. https://doi.org/10.1021/acs.est.8b00127

  10. Kampker A, Vallée D, Schnettler A (2018) Elektromobilität: Grundlagen einer Zukunftstechnologie. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  11. Brünglinghaus C (2012) Fahrzeugkonzepte: Conversion versus Purpose Design. In: Springer Professional. https://www.springerprofessional.de/fahrzeugtechnik/elektrofahrzeuge/fahrzeugkonzepte-conversion-versus-purpose-design/6561908. Accessed 15 Jul 2019

  12. Cregger J, Dawes M, Fischer S et al (2018) Low-speed automated shuttles: state of the practice. John A. Volpe National Transportation Systems Center, U.S. Department of Transportation, Cambridge

    Google Scholar 

  13. Burkhard B, Elliott C, Learn S, Ashdown M (2018) Technology scan white paper. Jacobs Engineering Group Inc., Dallas

    Google Scholar 

  14. Münster M, Schäffer M, Sturm R, Friedrich H (2016) Methodological development from vehicle concept to modular body structure for the DLR NGC-urban modular vehicle. In: FKFS F für K und FS- (ed) methodological development from vehicle concept to modular body structure for the DLR NGC-urban modular vehicle. Springer Vieweg \ensuremath| springer Fachmedien Wiesbaden GmbH 2016, pp 581–596

    Google Scholar 

  15. Friedrich HE, Ulrich C, Schmid S (2019) New vehicle concepts for future business models. In: Bargende M, Reuss H-C, Wagner A, Wiedemann J (eds) 19. Internationales Stuttgarter Symposium. Springer Fachmedien Wiesbaden, Wiesbaden, pp 815–829

    Google Scholar 

  16. Ulrich C, Friedrich H, Weimer J, Schmid S (2019) A highly innovative on-the-road modular vehicle and operation concept to solve today traffic issues. In: 32nd electric vehicle symposium (EVS32). Lyon

    Google Scholar 

  17. Maurer M (2016) Autonomous driving. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  18. Gawron JH, Keoleian GA, De Kleine RD et al (2018) Life cycle assessment of connected and automated vehicles: sensing and computing subsystem and vehicle level effects. Environ Sci Technol 52:3249–3256. https://doi.org/10.1021/acs.est.7b04576

    Article  Google Scholar 

  19. Novatel (2019) High-Precision GPS for Autonomous Vehicles. https://www.novatel.com/industries/autonomous-vehicles/#technology

  20. Bosch (2018) Safe automated driving from Bosch: centimeters make all the difference – Bosch Media Service. https://www.bosch-presse.de/pressportal/de/en/safe-automated-driving-from-bosch-centimeters-make-all-the-difference-176768.html. Accessed 31 Jul 2019

  21. Siegel JE, Erb DC, Sarma SE (2018) A survey of the connected vehicle landscape—architectures, enabling technologies, applications, and development areas. IEEE Trans Intell Transport Syst 19:2391–2406. https://doi.org/10.1109/TITS.2017.2749459

    Article  Google Scholar 

  22. ERTRAC (2019) Connected Automated Driving Roadmap. ERTRAC Working Group “Connectivity and Automated Driving,” Brussels

    Google Scholar 

  23. Kalinowski J, Drage T, Bräunl T (2014) Drive-by-wire for an autonomous formula SAE Car. In: proceedings of the 19th world congress, the International Federation of Automatic Control. Cape Town

    Google Scholar 

  24. Stephens TS, Gonder J, Chen Y, et al (2016) Estimated bounds and important factors for fuel use and consumer costs of connected and automated vehicles. Technical report NREL/ TP-5400-67216, National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  25. Wadud Z, MacKenzie D, Leiby P (2016) Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transp Res A Policy Pract 86:1–18. https://doi.org/10.1016/j.tra.2015.12.001

    Article  Google Scholar 

  26. Vahidi A, Sciarretta A (2018) Energy saving potentials of connected and automated vehicles. Elsevier, Amsterdam. https://doi.org/10.1016/j.trc.2018.09.001

    Book  Google Scholar 

  27. ACEA (2017) What is truck platooning? https://www.acea.be/uploads/publications/Platooning_roadmap.pdf. Accessed 16 Jul 2019

  28. Tobar (2019) ENSEMBLE regulatory framework – state of the art. https://platooningensemble.eu/storage/uploads/documents/2019/02/12/D6.10-ENSEMBLE-regulatory-framework%2D%2D-state-of-the-art-FINAL_under-approval-by-EC.pdf. Accessed 16 Jul 2019

  29. U.S. Department of Transportation FHA (2017) National Household Travel Survey (NHTS). https://nhts.ornl.gov/. Accessed 30 Jul 2019

  30. EEA (2010) Occupancy rates of passenger vehicles. In: European Environment Agency. http://www.eea.europa.eu/downloads/90455cbdfeff89c2c6149387ee11e4ea/1441389594/occupancy-rates-of-passenger-vehicles-1.pdf. Accessed 12 Feb 2016

  31. Brown A, Gonder J, Repac B (2014) An analysis of possible energy impacts of automated vehicles. In: Road vehicle automation. Springer International Publishing, Basel, pp 137–153

    Chapter  Google Scholar 

  32. BMW Group (2016) Behind the scenes: MINI VISION NEXT 100. http://intothefuture.eiu.com/behind-the-scenes-mini-vision-next-100/. Accessed 22 Jul 2019

  33. Daimler AG (2017) The Mercedes-Benz F 015 Luxury in Motion. https://www.mercedes-benz.com/en/mercedes-benz/innovation/research-vehicle-f-015-luxury-in-motion/. Accessed 22 Jul 2019

  34. BMW AG (2019) BMW The Next 100 Years: the BMW VISION NEXT 100. https://www.bmw.bs/en/topics/fascination-bmw/bmw-next-100/bmw-vision-next-100.html. Accessed 23 Jul 2019

  35. Lee J, Kockelman KM (2018) Energy implications of self-driving vehicles. In: 98th annual meeting of the Transportation Research Board, 13–17 Jan. Washington, D.C.

    Google Scholar 

  36. Michel P, Karbowski D, Rousseau A (2016) Impact of connectivity and automation on vehicle energy use. SAE technical paper 2016-01-0152, SAE international, Warrendale

    Google Scholar 

  37. NEXTCAR (2016) NEXT-Generation Energy Technologies for Connected and Automated on-Road-vehicles (NEXTCAR) Program Overview. https://arpa-e.energy.gov/sites/default/files/documents/files/NEXTCAR_ProgramOverview.pdf. Accessed 6 Aug 2019

  38. Dong J, Lu C, Hu L (2018) Estimating energy efficiency of connected and autonomous vehicles in a mixed Fleet. Center for Transportation Research and Education. Iowa State University, Ames

    Google Scholar 

  39. Anderson JM, Kalra N, Stanley KD et al (2014) Autonomous vehicle technology: a guide for policymakers. Rand Corporation, Santa Monica

    Google Scholar 

  40. Barth M, Boriboonsomsin K, Wu G (2014) Vehicle automation and its potential impacts on energy and emissions. In: Road Vehicle Automation. Springer International Publishing, Basel

    Google Scholar 

  41. Stern RE, Cui S, Delle Monache ML et al (2018) Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments. In: Transportation research part C: emerging technologies, vol 89. Elsevier, Amsterdam, pp 205–221

    Google Scholar 

  42. Baum M, Dibbelt J, Pajor T, Wagner D (2013) Energy-optimal routes for electric vehicles. In: Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems – SIGSPATIAL’13. ACM Press, Orlando, pp 54–63

    Google Scholar 

  43. Wang Y, Jiang J, Mu T (2013) Context-aware and energy-driven route optimization for fully electric vehicles via crowdsourcing. IEEE Trans Intell Transp Syst 14:1331–1345. https://doi.org/10.1109/TITS.2013.2261064

    Article  Google Scholar 

  44. Miao C, Liu H, Zhu GG, Chen H (2018) Connectivity-based optimization of vehicle route and speed for improved fuel economy. Transport Res Part C Emerg Technol 91:353–368. https://doi.org/10.1016/j.trc.2018.04.014

    Article  Google Scholar 

  45. Sun X, Yin Y (2019) Behaviorally stable vehicle platooning for energy savings. In: Transportation research part C: emerging technologies, vol 99. Elsevier, Amsterdam, pp 37–52

    Google Scholar 

  46. Bruneau C-H, Khadra K, Mortazavi I (2017) Flow analysis of square-back simplified vehicles in platoon. Int J Heat Fluid Flow 66:43–59. https://doi.org/10.1016/j.ijheatfluidflow.2017.05.008

    Article  Google Scholar 

  47. Ko Y, Song B, Oh Y (2019) Mathematical analysis of environmental effects of forming a platoon of smart vehicles. Sustainability 11:571. https://doi.org/10.3390/su11030571

    Article  Google Scholar 

  48. Schito P, Braghin F (2012) Numerical and experimental investigation on vehicles in platoon. SAE Int J Commer Veh 5:63–71. https://doi.org/10.4271/2012-01-0175

    Article  Google Scholar 

  49. Deutsche Telekom AG (2019) Smart Parking: Einfach parken mit der App Park and Joy. https://www.parkandjoy.de/. Accessed 17 Jul 2019

  50. Volvo (2018) Volvo Trucks Global. In: She’s got the look – Vera’s design explained. https://www.volvotrucks.com/en-en/news/volvo-trucks-magazine/2018/dec/vera-design-elements.html. Accessed 13 Aug 2019

  51. Pakusch C, Bossauer P, Shakoor M, Stevens G (2016) Using, sharing, and owning smart cars – a future scenario analysis taking general socio-technical trends into account. In: Proceedings of the 13th international joint conference on e-business and telecommunications (ICETE 2016), pp 19–30

    Google Scholar 

  52. TDonna C (2016) Management of a Shared Autonomous Electric Vehicle Fleet: Implications of Pricing Schemes. Transport Res Record J Transport Res Board:37–46. https://doi.org/10.3141/2572-05

  53. Stocker A, Shaheen S (2017) Shared automated mobility: early exploration and potential impacts. In: Road Vehicle Automation 4. Springer, Cham, pp 125–139. https://link.springer.com/chapter/10.1007/978-3-319-60934-8_12.

  54. Mahler G, Vahidi A (2014) An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of traffic-signal timing. IEEE Trans Intell Transport Syst 15:2516–2523. https://doi.org/10.1109/TITS.2014.2319306

    Article  Google Scholar 

  55. Calvert SC, Schakel WJ, van Lint JWC (2017) Will automated vehicles negatively impact traffic flow? J Adv Transp 2017:1–17. https://doi.org/10.1155/2017/3082781

    Article  Google Scholar 

  56. HERE (2017) How autonomous vehicles could relieve or worsen traffic congestion. HERE Berlin, Berlin

    Google Scholar 

  57. Vasebi S, Hayeri YM, Samaras C, Hendrickson C (2018) Low-Level Automated Light-Duty Vehicle Technologies Provide Opportunities to Reduce Fuel Consumption Transportation Research Record: Journal of the Transportation Research Board 036119811879640. https://doi.org/10.1177/0361198118796401

  58. Auld J, Sokolov V, Stephens TS (2017) Analysis of the effects of connected–automated vehicle technologies on travel demand. Transp Res Rec 2625:1–8. https://doi.org/10.3141/2625-01

    Article  Google Scholar 

  59. Soteropoulos A, Berger M, Ciari F (2019) Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transp Rev 39:29–49. https://doi.org/10.1080/01441647.2018.1523253

    Article  Google Scholar 

  60. Intellias (2019) How will urban infrastructure change with autonomous driving? | Intellias Blog. https://www.intellias.com/how-will-urban-infrastructure-change-with-autonomous-driving/. Accessed 30 Jul 2019

  61. Gonder J, Wood E, Rajagopalan S (2016) Connectivity-Enhanced Route Selection and Adaptive Control for the Chevrolet Volt. JTTE 4. https://doi.org/10.17265/2328-2142/2016.01.006

  62. Zhu H, Yang Z (2011) Simulation of the aerodynamic interaction of two generic sedans moving very closely. In: 2011 international conference on electric information and control engineering. IEEE, Wuhan, pp 2595–2600

    Google Scholar 

  63. Browand F, McArthur J, Radovich C (2004) Fuel saving achieved in the field test of two tandem trucks. California Partners for Advanced Transit and Highways (PATH)

    Google Scholar 

  64. Tsugawa S (2014) Results and issues of an automated truck platoon within the energy ITS project. In: 2014 IEEE intelligent vehicles symposium proceedings. IEEE, pp 642–647

    Google Scholar 

  65. Krail M, Hellekes J, Schneider U et al (2019) Energie- und Treibhausgaswirkungen des automatisierten und vernetzten Fahrens im Straßenverkehr. Karlsruhe

    Google Scholar 

  66. SAE (2018) SAE J3016 taxonomy and definitions for terms related to driving automation Systems for on-Road Motor Vehicles. SAE International, Warrendale

    Google Scholar 

  67. Velodyne (2018) Velodyne LiDAR HDL-64E datasheet. https://velodynelidar.com/docs/datasheet/63-9194_Rev-J_HDL-64E_S3_Spec%20Sheet%20Web.pdf. Accessed 18 Jul 2019

  68. Velodyne (2018) Velodyne LiDAR HDL-32E. https://egps.net/datasheets/Velodyne-HDL-32E-Scanner-Datasheet.pdf. Accessed 18 Jul 2019

  69. NVIDIA (2018) NVIDIA self driving safety report 2018. NVIDIA Corporation, Santa Clara

    Google Scholar 

  70. Slowik P, Kamakaté F (2017) New mobility: today’s technology and policy landscape. The international council on clean transportation, Washingtion, D.C.

    Google Scholar 

  71. Fox-Penner P, Gorman W, Hatch J (2018) Long-term U.S transportation electricity use considering the effect of autonomous-vehicles: estimates & policy observations. Energy Policy 122:203–213. https://doi.org/10.1016/j.enpol.2018.07.033

    Article  Google Scholar 

  72. Knittel CR (2009) Automobiles on steroids: product attribute trade-offs and technological Progress in the automobile sector. National Bureau of Economic Research, Cambridge

    Book  Google Scholar 

  73. Hall D, Cui H, Lutsey N (2017) Electric vehicle capitals of the world: what markets are leading the transition to electric? The international council on clean transportation, Washingtion, D.C.

    Google Scholar 

  74. Meyer G, Beiker S, eds. (2019) Road vehicle automation 5. Springer International Publishing Switzerland, Basel. https://www.springer.com/de/book/9783319948959

Books and Reviews

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mascha Brost .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brost, M. et al. (2021). Energy Consumption of Connected and Automated Vehicles. In: Elgowainy, A. (eds) Electric, Hybrid, and Fuel Cell Vehicles. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1492-1_1098

Download citation

Publish with us

Policies and ethics