Skip to main content

Networks, Flexibility and Mobility in

  • Reference work entry
  • First Online:
  • 815 Accesses

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

Glossary

Atypical graph:

A special graph with symmetry, such as parallel lines – in contrast to a generic graph.

Covalent bond:

When a covalent bond exists between two atoms in a molecule, the bond length is fixed and independent of the environment. The bond angle is also usually fixed between two covalent bonds that share a common atom.

Dihedral angle rotation:

A rotation about a covalent bond connecting two atoms in a larger molecule.

Generic graph:

A graph with arbitrary positions of the vertices and associated edges.

Geometrical simulation:

A technique that allows the motion of the flexible parts of a network to be determined while obeying all the constraints, both equalities and inequalities.

Graph:

A set of vertices connected by edges.

Hyperstatic:

When the number of degrees of freedom is less than the number of constraints plus the number of rigid body motions.

Hypostatic:

When the number of degrees of freedom is greater than the number of constraints plus the number of rigid...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

Primary Literature

  • Arbabi S, Sahimi M (1993) Mechanics of disordered solids. I Percolation on elastic networks with central forces. Phys Rev B Condens Matter 47:695–702

    Article  ADS  Google Scholar 

  • Ashcroft NW, Mermin ND (1976) Solid state physics. Holt Rinehart and Winston, New York, p 826

    Google Scholar 

  • Brooks RR, Bruccoleri BE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  • Bycroft M, Ludvigsen S, Fersht AR, Poulsen FM (1991) Determination of the three-dimensional solution structure of barnase using nuclear magnetic resonance spectroscopy. Biochemistry 30:8697–8701

    Article  Google Scholar 

  • Chubynsky MV, Thorpe MF (2007) Algorithms for 3d rigidity analysis and a first order phase transition. Phys Rev E 76:041135

    Article  ADS  Google Scholar 

  • Dove MT, Heine V, Hammonds KD (1995) Rigid unit modes in framework silicates. Mineral Mag 59:629–639

    Article  Google Scholar 

  • Dove MT, Hammonds KD, Heine V, Withers RL, Xiao Y, Kirkpatrick RJ (1996) Rigid unit modes in the high-temperature phase of sio2 tridymite: calculations and electron diffraction. Phys Chem Miner 23:56–62

    Article  ADS  Google Scholar 

  • Dove MT, Keen DA, Hannon AC, Swainson IP (1997) Direct measurement of the si-o bond length and orientational disorder in the high-temperature phase of cristobalite. Phys Chem Miner 24:311–317

    Article  ADS  Google Scholar 

  • Dove MT, Trachenko KO, Tucker MG, Keen DA (2000) Rigid unit modes in framework structures: theory, experiment and applications. Transform Process Miner 39:1–33

    Google Scholar 

  • Feng S, Thorpe MF, Garboczi E (1985) Effective-medium theory of percolation on central-force elastic networks. Phys Rev B 31:276–280

    Article  ADS  Google Scholar 

  • Fowler PD, Guest S (2002) Symmetry and states of self-stress in toroidal frames. Int J Solids Struct 39:4385–4393

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein H, Poole CP, Safko JL (2002) Classical mechanics, 3rd edn. Addison-Wesley, San Francisco, p 638

    Google Scholar 

  • Hartley RW (1989) Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci 14:450–454

    Article  Google Scholar 

  • He H, Thorpe MF (1985) Elastic properties of glasses. Phys Rev Lett 54:2107–2110

    Article  ADS  Google Scholar 

  • Hendrickson B (1992) Conditions for unique graph realizations. SIAM J Comput 21:65–84

    Article  MathSciNet  MATH  Google Scholar 

  • Hespenheide BM, Jacobs DJ, Thorpe MF (2004) Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus. J Phys Condens Matter 16:S5055–S5064

    Article  ADS  Google Scholar 

  • Jacobs D (1998) Generic rigidity in three-dimensional bond-bending networks. J Phys A Math Gen 31:6653–6668

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jacobs D, Hendrickson B (1997) An algorithm for two-dimensional rigidity percolation: the pebble game. J Comp Phys 137:346–365

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jacobs DJ, Thorpe MF (1995) Generic rigidity percolation: the pebble game. Phys Rev Lett 75:4051–4054

    Article  ADS  Google Scholar 

  • Jacobs DJ, Thorpe MF (1996) Generic rigidity percolation in two dimensions. Phys Rev E 53:3682–3693

    Article  ADS  Google Scholar 

  • Jacobs D, Kuhn LA, Thorpe MF (1999) Flexible and rigid regions in proteins. In: Thorpe MF, Duxbury PM (eds) Rigidity theory and applications. Kluwer Academic/Plenum Publishers, Traverse City

    Google Scholar 

  • Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility predictions using graph theory. Proteins 44:150–165

    Article  Google Scholar 

  • Kangwai RD, Guest S (1999) Detection of finite mechanisms in symmetric structures. Int J Solids Struct 36:5507–5527

    Article  MATH  Google Scholar 

  • Kittel C, Shore H (1965) Development of a phase transition for a rigorously solvable many-body system. Phys Rev 138:A1165–A1169

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kuhn LA, Zavodszky MI, Arora S, Lei M, Thorpe MF (2004) Modeling correlated protein main-chain and side-chain motions in ligand docking and screening. Abstr Pap Am Chem Soc 228:U501

    Google Scholar 

  • Lagrange J-L (1788) Mécanique Analytique, 4th edn. Gauthier–Villars, Paris

    Google Scholar 

  • Laman G (1970) On graphs and rigidity of plane skeletal structures. J Eng Math 4:331–340

    Article  MathSciNet  MATH  Google Scholar 

  • Lee A, Streinu I, Brock O (2005) A methodology for efficiently sampling the conformation space of molecular structures. Phys Biol 2:S108–S115

    Article  ADS  Google Scholar 

  • Lei M, Zavodszky MI, Kuhn LA, Thorpe MF (2004) Sampling protein conformations and pathways. J Comput Chem 25:1133–1148

    Article  Google Scholar 

  • Maxwell JC (1864a) On the calculation of the equilibrium and stiffness of frames. Philos Mag 27:294–299

    Article  Google Scholar 

  • Maxwell JC (1864b) On reciprocal figures and diagrams of forces. Philos Mag 27:250–261

    Article  Google Scholar 

  • McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  ADS  Google Scholar 

  • Pauling L (1928) The shared-electron chemical bond. Proc Natl Acad Sci U S A 14:359–362

    Article  ADS  Google Scholar 

  • Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  ADS  MATH  Google Scholar 

  • Phillips J (1979) Topology of covalent non-crystalline solids. 1 Short-range order in chalcogenide alloys. J Non-Cryst Solid 34:153–181

    Article  ADS  Google Scholar 

  • Rader AJ, Hespenheide BM, Kuhn LA, Thorpe MF (2002) Protein unfolding: rigidity lost. Proc Natl Acad Sci U S A 99:3540–3545

    Article  ADS  Google Scholar 

  • Streinu I (2000) A combinatorial approach to planar noncolliding robot arm motion planning. In: Proceedings of the 41st annual ACM/IEEE symposium on foundations of computer science (FOCS 2000). IEEE Computer Society, Washington, DC, p 443

    Chapter  Google Scholar 

  • Tay T-S, Whiteley W (2005) Comparison of molecular models. Unpublished

    Google Scholar 

  • Thorpe MF (1983) Continuous deformations in random networks. J Non-Cryst Solids 57:355–370

    Article  ADS  Google Scholar 

  • Thorpe MF, Jacobs DJ, Chubynsky NV, Rader AJ (1999) Generic rigidity of network glasses. In: Thorpe MF, Duxbury PM (eds) Rigidity theory and applications. Kluwer Academic/Plenum Publishers, New York, pp 239–277

    Google Scholar 

  • Wales D (2003) Energy landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Wells SA, Menor S, Hespenheide BM, Thorpe M (2005) Constrained geometric simulation of diffusive motion in proteins. Phys Biol 2:S127–S136

    Article  ADS  Google Scholar 

  • Whiteley W (1999) Rigidity of molecular structures: generic and geometric analysis. In: Thorpe MF, Duxbury PM (eds) Rigidity theory and applications. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Whiteley W (2005) Counting out to the flexibility of molecules. Phys Biol 2:S116–S126

    Article  ADS  Google Scholar 

Books and Reviews

  • Boolchand P (2000) Insulating and semiconducting glasses. Series on directions in Condens Matter Phys 17. World Scientific, Singapore

    Google Scholar 

  • Graver JE, Servatius B, Servatius H (1993) Combinatorial rigidity. In: Graduate Series in Mathematics. Am Math Soc

    Google Scholar 

  • Thorpe MF, Duxbury PM (1999) Rigidity theory and applications. Kluwer Academic/Plenum Press, New York

    Google Scholar 

  • Thorpe MF, Tichy L (2001) Properties and applications of amorphous materials. In: Thorpe MF, Tichy L (eds) NATO Science Series, II Mathematics, Physics and Chemistry, vol 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thorpe, M.F. (2009). Networks, Flexibility and Mobility in. In: Sahimi, M., Hunt, A.G. (eds) Complex Media and Percolation Theory. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1457-0_354

Download citation

Publish with us

Policies and ethics