Skip to main content

Elastic Percolation Networks

  • Reference work entry
  • First Online:
Book cover Complex Media and Percolation Theory

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media New York 2013

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alava MJ, Niskanen KJ (2006) The physics of paper. Rep Prog Phys 69:669–724

    Article  ADS  Google Scholar 

  • Alexander S (1998) Amorphous materials: their structure, lattice dynamics and elasticity. Phys Rep 296:65–236

    Article  ADS  Google Scholar 

  • Angell CA (2004) Boson peaks and floppy modes: some relations between constraint and excitions phenomenology, and interpretation, of glasses and glass transition. J Phys Condens Matter 16:S5153–S5164

    Article  ADS  Google Scholar 

  • Axelos MAV, Kolb M (1990) Crosslinked biopolymers: experimental evidence for scalar percolation theory. Phys Rev Lett 64:1457–1460

    Article  ADS  Google Scholar 

  • Barsky SJ, Plischke M (1996) Order and localization in randomly cross-linked polymer networks. Phys Rev E 53:871–876

    Article  ADS  Google Scholar 

  • Bausch AR, Kroy K (2006) A bottom-up approach to cell mechanics. Nat Phys 2:231–238

    Article  Google Scholar 

  • Benguigui L (1984) Experimental study of the elastic properties of a percolating system. Phys Rev Lett 53:2028–2030

    Article  ADS  Google Scholar 

  • Bergman DJ (2003) Exact relations between critical exponents for elastic stiffness and electrical conductivity of percolating networks. Physica B 338:240–246

    Article  ADS  Google Scholar 

  • Boolchand P, Georgiev DG, Goodman B (2001) Discovery of the intermediate phase in chalcogenide glasses. J Optoelectron Adv Mater 3:703–720

    Google Scholar 

  • Boolchand P, Lucovsky G, Phillips JC, Thorpe MF (2005) Self-organization and the physics of glassy networks. Philos Mag 85:3823–3838

    Article  ADS  Google Scholar 

  • Bresser W, Boolchand P, Suranyi P (1986) Rigidity percolation and molecular clustering in network glasses. Phys Rev Lett 56:2493–2496

    Article  ADS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S et al (2004) Charmm: a program for macromolecular energy, minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  • Cai Y (1989) Floppy modes in network glasses. Phys Rev B 40:10535–10542

    Article  ADS  Google Scholar 

  • Chalupa J, Leath PL, Reich GR (1979) Bootstrap percolation on a bethe lattice. J Phys C 12:L31–L35

    Article  ADS  Google Scholar 

  • Chubynsky MV, Thorpe MV (2007) Algorithms for 3d-rigidity analysis and a first-order percolation transition. Phys Rev E 76:41135

    Article  ADS  Google Scholar 

  • Day AR, Tremblay RR, Tremblay AMS (1986) Rigid backbone: a new geometry for percolation. Phys Rev Lett 56:2501–2504

    Article  ADS  Google Scholar 

  • de Gennes PG (1976) On the relation between percolation theory and the elasticity of gels. J Phys 37:L1–L2

    Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  • Deptuck D, Harrison JP, Zawadzki P (1985) Measurement of elasticity and conductivity of a three-dimensional percolation system. Phys Rev Lett 54:913–916

    Article  ADS  Google Scholar 

  • Dohler GH, Dandoloff R, Bilz H (1980) A topological-dynamical model of amorphycity. J Non-Cryst Solids 42:87–95

    Article  ADS  Google Scholar 

  • Donev A, Torquato S, Stillinger FH (2005) Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys Rev E 71:11105

    Article  ADS  MathSciNet  Google Scholar 

  • Duxbury PM, Jacobs DJ, Thorpe MF, Moukarzel C (1999) Floppy modes and the free energy: rigidity and connectivity percolation on bethe lattices. Phys Rev E 59:2084–2092

    Article  ADS  Google Scholar 

  • Feng S, Sen PN (1984) Percolation on elastic networks: new exponent and threshold. Phys Rev Lett 52:216–219

    Article  ADS  Google Scholar 

  • Feng S, Thorpe MF, Garboczi E (1985) Effective-medium theory of percolation on central-force networks. Phys Rev B 31:276–280

    Article  ADS  Google Scholar 

  • Feng S, Halperin B, Sen PN (1987) Transport properties of continuum systems near the percolation threshold. Phys Rev B 35:197–214

    Article  ADS  Google Scholar 

  • Feng X, Bresser WJ, Boolchand P (1997) Direct evidence for stiffness threshold in chalcogenide glasses. Phys Rev Lett 78:4422–4425

    Article  ADS  Google Scholar 

  • Fisher ME, Essam JW (1961) Some cluster size and percolation problems. J Math Phys 2:609–619

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  • Grant MC, Russell WB (1993) Volume fraction dependence of elastic moduli and transition temperatures for colloidal silica gels. Phys Rev E 47:2606–2614

    Article  ADS  Google Scholar 

  • Guyon E, Roux S, Hansen A, Bideau D, Troadec JP et al (1990) Non-local and non-linear problems in the mechanics of disordered systems: application to granular media and rigidity problems. Rep Prog Phys 53:373–419

    Article  ADS  Google Scholar 

  • Hansen A, Roux S (1989) Universality class of central-force percolation. Phys Rev B 40:749–752

    Article  ADS  Google Scholar 

  • He H, Thorpe MF (1985) Elastic properties of glasses. Phys Rev Lett 54:2107–2110

    Article  ADS  Google Scholar 

  • Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of crosslinked cytoskeletal and semiflexible polymer networks. Phys Rev E 68:61907

    Article  ADS  Google Scholar 

  • Hendrickson B (1992) Conditions for unique graph realizations. SIAM J Comput 21:65–84

    Article  MathSciNet  MATH  Google Scholar 

  • Heussinger C, Frey E (2006) Stiff polymers, foams and fiber networks. Phys Rev Lett 96:1–4

    Article  Google Scholar 

  • Jacobs DJ (1998) Generic rigidity in three-dimensional bond-bending networks. J Phys A Math Gen 31:6653–6668

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jacobs DJ, Hendrickson B (1997) An algorithm for two-dimensional rigidity percolation: the pebble game. J Comput Phys 137:346–365

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jacobs DJ, Thorpe MF (1995) Generic rigidity percolation: the pebble game. Phys Rev Lett 75:4051–4054

    Article  ADS  Google Scholar 

  • Jacobs DJ, Thorpe MF (1996) Generic rigidity percolation in two dimensions. Phys Rev E 53:3682–3693

    Article  ADS  Google Scholar 

  • Kamitakahara WA, Cappelletti RL, Boolchand P, Halfpap B, Gompf F et al (1991) Vibrational densities of states and network rigidity in chalcogenide glasses. Phys Rev B 44:94–100

    Article  ADS  Google Scholar 

  • Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52:1891–1894

    Article  ADS  Google Scholar 

  • Kasza KE, Rowat AC, Liu J, Angelini RE, Brangwynne CP et al (2007) The cell as a material. Curr Opin Cell Biol 19:101–107

    Article  Google Scholar 

  • Laman G (1970) On graphs and rigidity of plane skeletal structures. J Eng Math 4:331–340

    Article  MathSciNet  MATH  Google Scholar 

  • LatvaKokko M, Timonen J (2001) Rigidity of random networks of stiff fibers in the low density limit. Phys Rev E 64:66117

    Article  ADS  Google Scholar 

  • LatvaKokko M, Makinen J, Timonen J (2001) Rigidity transition in two-dimensional random fiber networks. Phys Rev E 63:46113

    Article  ADS  Google Scholar 

  • Majmudar TS, Sperl M, Luding S, Behinger RP (2007) Jamming transition in granular systems. Phys Rev Lett 98:58001

    Article  ADS  Google Scholar 

  • Martin JE, Adolf D, Wilcox JP (1988) Viscoelasticity of near-critical gels. Phys Rev Lett 61:2620–2623

    Article  ADS  Google Scholar 

  • Maxwell JC (1864) On the calculation of the equilibrium stiffness of frames. Philos Mag 27:294–301

    Article  Google Scholar 

  • Mayo SL, Olafson BD, Goddard WA (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem 94:8897–8909

    Article  Google Scholar 

  • Moukarzel C (1996) An efficient algorithm for testing the generic rigidity of graphs in the plane. J Phys A Math Gen 29:8079–8098

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moukarzel CF (1998) Isostatic phase transition and instability in stiff granular materials. Phys Rev Lett 81:1634–1637

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM (1990) Comparison of rigidity and connectivity percolation in two dimensions. Phys Rev E 59:2614–2622

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM (1995) Stressed backbone and elasticity of random central-force system. Phys Rev Lett 75:4055–4058

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM, Leath PL (1997a) First-order rigidity on Cayley trees. Phys Rev E 55:5800–5811

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM, Leath PL (1997b) Infinite-cluster geometry in central-force networks. Phys Rev Lett 78:1480–1483

    Article  ADS  Google Scholar 

  • Obukhov SP (1995) First order rigidity transition in random rod networks. Phys Rev Lett 74:4472–4475

    Article  ADS  Google Scholar 

  • Ohern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68:11306

    Article  ADS  Google Scholar 

  • Parisi G (2003) On the origin of the boson peak. J Phys Condens Matter 15:S765–S774

    Article  ADS  Google Scholar 

  • Phillips JC (1979) Topology of covalent non-crystalline solids i: short-range order in chalcogenide alloys. J Non-Cryst Solids 34:153–181

    Article  ADS  Google Scholar 

  • Plischke M (2006) Critical behavior of entropic shear rigidity. Phys Rev E 73:61406

    Article  ADS  Google Scholar 

  • Plischke M, Joos B (1998) Entropic elasticity of diluted central force networks. Phys Rev Lett 80:4907–4910

    Article  ADS  Google Scholar 

  • Plischke M, Vernon DC, Joos B, Zhou Z (1998) Entropic elasticity of diluted central force networks. Phys Rev E 60:3129–3135

    Article  ADS  Google Scholar 

  • Rader AJ, Hespenheide BM, Kuhn LA, Thorpe MF (2002) Protein unfolding: rigidity lost. PNAS 99:3540–3545

    Article  ADS  Google Scholar 

  • Rivoire O, Barré J (2006) Exactly solvable models of adaptive networks. Phys Rev Lett 97:148701

    Article  ADS  Google Scholar 

  • Ross-Murphy SB (2007) Biopolymer gelation-exponents and critical exponents. Polym Bull 58:119–126

    Article  Google Scholar 

  • Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41:197–218

    Article  ADS  Google Scholar 

  • Sahimi M (1998) Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Phys Rep 306:214–395

    Article  ADS  MathSciNet  Google Scholar 

  • Sahimi M, Arbabi S (1993a) Mechanics of disordered solids. i. percolation on elastic networks with central forces. Phys Rev B 47:695–702

    Article  ADS  Google Scholar 

  • Sahimi M, Arbabi S (1993b) Mechanics of disordered solids. ii. percolation on elastic networks with bond-bending forces. Phys Rev B 47:703–712

    Article  ADS  Google Scholar 

  • Schwartz LM, Feng S, Thorpe MF, Sen PN (1985) Behavior of depleted elastic networks: comparison of effective medium theory and numerical simulations. Phys Rev B 32:4607–4617

    Article  ADS  Google Scholar 

  • Schwarz JH, Liu AJ, Chayes LQ (2006) The onset of jamming as the sudden emergence of an infinite k-core cluster. Europhys Lett 73:560–566

    Article  ADS  Google Scholar 

  • Serrano D, Peyrelasse J, Boned C, Harran D, Monge P (1990) Application of the percolation model to gelation of an epoxy resin. J Appl Polym Sci 39:670–693

    Article  Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Adv Polym Sci 44:103–158

    Article  Google Scholar 

  • Tang W, Thorpe MF (1988) Percolation of elastic networks under tension. Phys Rev B 37:5539–5551

    Article  ADS  Google Scholar 

  • Tay TS (1984) Rigidity of multi-graphs. i. linking rigid bodies in n-space. J Comb Theory B 36:95–112

    Article  MATH  Google Scholar 

  • Tay TS, Whiteley W (1985) Generating isostatic frameworks. Struct Topol 11:21–68

    MathSciNet  MATH  Google Scholar 

  • Tharmann R, Claessens MMAE, Bausch AR (2007) Viscoelasticity of isotropically crosslinked actin networks. Phys Rev Lett 98:88103

    Article  ADS  Google Scholar 

  • Thorpe MF (1983) Continuous deformations in random networks. J Non-Cryst Solids 57:355–370

    Article  ADS  Google Scholar 

  • Thorpe MF, Duxbury PM (eds) (1999) Rigidity theory and applications. Plenum, New York

    Google Scholar 

  • Thorpe MF, Jacobs DJ, Chubynsky MV, Phillips JC (2000) Self-organization in network glasses. J Non-Cryst Solids 266–269:859–866

    Article  ADS  Google Scholar 

  • Uebbing B, Sievers AJ (1996) Role of network topology on the vibrational lifetime of an H2O molecule in the ge-as-se glass series. Phys Rev Lett 76:932–935

    Article  ADS  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  Google Scholar 

  • Whiteley W (2005) Counting out to the flexibility of molecules. Phys Biol 2:S116–S126

    Article  ADS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near the liquid-solid transition. Adv Polym Sci 134:165–234

    Article  Google Scholar 

  • Wyart M (2005) On the rigidity of amorphous solids. Ann Phys Fr 30:1–96

    Article  Google Scholar 

  • Wyart M, Nagel SR, Witten TA (2005) Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys Lett 72:486–492

    Article  ADS  Google Scholar 

  • Wyss HM, Tervoort EV, Gauckler LJ (2005) Mechanics and microstructures of concentrated particle gels. J Am Ceram Soc 88:2337–2348

    Article  Google Scholar 

  • Xing X, Mukhopadhyay S, Goldbart PM (2004) Scaling of entropic shear rigidity. Phys Rev Lett 93:225701

    Article  ADS  Google Scholar 

  • Xu J, Bohnsack DA, Mackay ME, Wooley KL (2007) Unusual mechanical performance of amphiphilic crosslinked polymer networks. J Am Chem Soc Commun 129:506–507

    Article  Google Scholar 

  • Zabolitzky JG, Bergman DJ, Stauffer D (1985) Precision calculation of elasticity for percolation. J Stat Phys 54:913–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip M. Duxbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Duxbury, P.M. (2021). Elastic Percolation Networks. In: Sahimi, M., Hunt, A.G. (eds) Complex Media and Percolation Theory. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1457-0_170

Download citation

Publish with us

Policies and ethics