Skip to main content

Solar Energy in Thermochemical Processing

  • Reference work entry
  • First Online:
Solar Thermal Energy
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC,

Glossary

Aperture:

Opening of a solar cavity receiver.

Carnot efficiency:

Maximum efficiency for converting heat from a high-temperature thermal reservoir at TH into work in a cyclic process, and rejecting heat to a low-temperature thermal reservoir at TL, given by 1 âˆ’ TL/TH.

CB (carbon black):

Important industrial raw material used as pigment and reinforcement in rubber and plastic products.

CPC (compound parabolic concentrator):

Nonimaging concentrating device that is usually positioned in tandem with the primary parabolic concentrating system to further augment the solar concentration ratio.

CSP (concentrating solar power):

CSP plants generate electricity by converting solar energy into high-temperature heat using various mirror configurations.

Direct normal solar irradiance:

Power flux of direct solar irradiation on a surface perpendicular to the sun’s rays

Endothermic:

Absorbs heat.

Exergy efficiency (for a solar thermochemical process):

The efficiency for converting solar energy...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Steinfeld A, Meier A (2004) Solar fuels and materials. In: Cleveland C (ed) Encyclopedia of energy, vol 5. Elsevier, Amsterdam, pp 623–637

    Chapter  Google Scholar 

  2. IEA (2010) IEA technology roadmap – concentrating solar power. International Energy Agency, Paris

    Google Scholar 

  3. Haueter P, Seitz T, Steinfeld A (1999) A new high-flux solar furnace for high-temperature thermochemical research. J Sol Energy Eng 121:77–80

    Article  Google Scholar 

  4. Welford WT, Winston R (1989) High collection nonimaging optics. Academic, San Diego

    Google Scholar 

  5. Romero M, Buck R, Pacheco JE (2002) An update on solar central receiver systems, projects, and technologies. J Sol Energy Eng 124(2):98–108

    Article  Google Scholar 

  6. Yogev A, Kribus A, Epstein M, Kogan A (1998) Solar tower reflector systems: a new approach for high-temperature solar plants. Int J Hydrog Energy 23:239–245

    Article  Google Scholar 

  7. Fletcher EA, Moen RL (1977) Hydrogen and oxygen from water. Science 197:1050–1056

    Article  Google Scholar 

  8. Steinfeld A, Schubnell M (1993) Optimum aperture size and operating temperature of a solar cavity-receiver. Sol Energy 50:19–25

    Article  Google Scholar 

  9. JANAF Thermochemical Tables (1985) National bureau of standards, 3rd edn. National Bureau of Standards, Washington, DC

    Google Scholar 

  10. Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y (1998) Solar-processed metals as clean energy carriers and water-splitters. Int J Hydrog Energy 23:767–774

    Article  Google Scholar 

  11. Schunk LO, Steinfeld A (2009) Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar-driven thermogravimeter in the 1800-2100 K range. AICHE J 55:1497–1504

    Article  Google Scholar 

  12. Palumbo R, Lédé J, Boutin O, Elorza-Ricart E, Steinfeld A, Möller S, Weidenkaff A, Fletcher EA, Bielicki J (1998) The production of Zn from ZnO in a single step high temperature solar decomposition process I. The scientific framework for the process. Chem Eng Sci 53:2503–2518

    Article  Google Scholar 

  13. Weidenkaff A, Reller AW, Wokaun A, Steinfeld A (2000) Thermogravimetric analysis of the ZnO/Zn water splitting cycle. Thermochim Acta 359:69–75

    Article  Google Scholar 

  14. Möller S, Palumbo R (2001) Solar thermal decomposition kinetics of ZnO in the temperature range 1950-2400 K. Chem Eng Sci 56:4505–4515

    Article  Google Scholar 

  15. Perkins C, Lichty P, Weimer AW (2007) Determination of aerosol kinetics of thermal ZnO dissociation by thermogravimetry. Chem Eng Sci 62:5952–5962

    Article  Google Scholar 

  16. Perkins C, Lichty PR, Weimer A (2008) Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int J Hydrog Energy 33:499–510

    Article  Google Scholar 

  17. Haueter P, Moeller S, Palumbo R, Steinfeld A (1999) The production of zinc by thermal dissociation of zinc oxide – solar chemical reactor design. Sol Energy 67:161–167

    Article  Google Scholar 

  18. Alxneit I (2008) Assessing the feasibility of separating a stoichiometric mixture of zinc vapor and oxygen by a fast quench – model calculations. Sol Energy 82:959–964

    Article  Google Scholar 

  19. Steinfeld A, Palumbo R (2001) Solar thermochemical process technology. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 15. Academic, San Diego, pp 237–256

    Google Scholar 

  20. Fletcher EA (1999) Solarthermal and solar quasi-electrolytic processing and separations: Zinc from Zinc Oxide as an example. Ind Eng Chem Res 38:2275–2282

    Article  Google Scholar 

  21. Fletcher EA, Macdonald F, Kunnerth D (1985) High temperature solar electrothermal processing II. Zinc from zinc oxide. Energy 10:1255–1272

    Article  Google Scholar 

  22. Palumbo RD, Fletcher EA (1988) High temperature solar electro-thermal processing III. Zinc from zinc oxide at 1200-1675 K using a non-consumable anode. Energy 13:319–332

    Article  Google Scholar 

  23. Parks DJ, Scholl KL, Fletcher EA (1988) A study of the use of Y2O3 doped ZrO2 membranes for solar electrothermal and solar thermal separations. Energy 13:121–136

    Article  Google Scholar 

  24. Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78:603–615

    Article  Google Scholar 

  25. Venstrom L, Krueger K, Leonard N, Tomlinson B, Duncan S, Palumbo RD (2009) Solar thermal electrolytic process for the production of Zn from ZnO: an ionic conductivity study. J Sol Energy Eng 131:031005–031001

    Article  Google Scholar 

  26. Murray JP, Steinfeld A, Fletcher EA (1995) Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides. Energy 20:695–704

    Article  Google Scholar 

  27. Steinfeld A, Fletcher EA (1991) Theoretical and experimental investigation of the carbothermic reduction of Fe2O3 using solar energy. Energy 16:1011–1019

    Article  Google Scholar 

  28. Steinfeld A, Kuhn P, Karni J (1993) High temperature solar thermochemistry: production of iron and synthesis gas by Fe3O4-reduction with methane. Energy 18:239–249

    Article  Google Scholar 

  29. Steinfeld A, Frei A, Kuhn P, Wuillemin D (1995) Solarthermal production of zinc and syngas via combined ZnO-reduction and CH4-reforming processes. Int J Hydrog Energy 20:793–804

    Article  Google Scholar 

  30. Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D (1998) A solar chemical reactor for the co-production of zinc and synthesis gas. Energy 23:803–814

    Article  Google Scholar 

  31. Kräupl S, Steinfeld A (2001) Experimental investigation of a vortex-flow solar chemical reactor for the combined ZnO-reduction and CH4-reforming. J Sol Energy Eng 123:237–243

    Article  Google Scholar 

  32. Kräupl S, Steinfeld A (2003) Operational performance of a 5 kW solar chemical reactor for the co-production of zinc and syngas. J Sol Energy Eng 125:124–126

    Article  Google Scholar 

  33. Wieckert C, Steinfeld A (2002) Solar thermal reduction of ZnO using CH4:ZnO and C:ZnO molar ratios less than 1. J Sol Energy Eng 124:55–62

    Article  Google Scholar 

  34. Osinga T, Frommherz U, Steinfeld A, Wieckert C (2004) Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor. J Sol Energy Eng 126:633–637

    Article  Google Scholar 

  35. Osinga T, Olalde G, Steinfeld A (2004) The solar carbothermal reduction of ZnO - shrinking packed-bed reactor modeling and experimental validation. Ind Eng Chem Res 43:7981–7988

    Article  Google Scholar 

  36. Wieckert C, Frommherz U, Kräupl S, Guillot E, Olalde G, Epstein M, Santén S, Osinga T, Steinfeld A (2007) A 300 kW solar chemical pilot plant for the carbothermic production of zinc. J Sol Energy Eng 129(2):190–196

    Article  Google Scholar 

  37. Epstein M, Olalde G, Santén S, Steinfeld A, Wieckert C (2008) Towards the industrial solar carbothermal production of zinc. J Sol Energy Eng 130(1):014505

    Article  Google Scholar 

  38. Meier A, Steinfeld A (2010) Solar thermochemical production of fuels. Adv Sci Technol 74:303–312

    Article  Google Scholar 

  39. Jensen SH, Larsen PJ, Mogensen M (2007) Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrog Energy 32(15):3253–3257

    Article  Google Scholar 

  40. Kogan A (1998) Direct solar thermal splitting of water and on-site separation of the products. II. Experimental feasibility study. Int J Hydrog Energy 23:89–98

    Article  Google Scholar 

  41. Ihara S (1980) On the study of hydrogen production from water using solar thermal energy. Int J Hydrog Energy 5:527–534

    Article  Google Scholar 

  42. Diver RB, Pederson S, Kappauf T, Fletcher EA (1983) Hydrogen and oxygen from water – VI. Quenching the effluent from a solar furnace. Energy 12:947–955

    Article  Google Scholar 

  43. Lédé J, Villermaux J, Ouzane R, Hossain MA, Ouahes R (1987) Production of hydrogen by simple impingement of a turbulent jet of steam upon a high temperature zirconia surface. Int J Hydrog Energy 12:3–11

    Article  Google Scholar 

  44. Le Duigou A, Borgard JM, Larousse B, Doizi D, Allen R, Ewan B et al (2007) HYTHEC: an EC funded search for a long term massive hydrogen production route using solar and nuclear technologies. Int J Hydrog Energy 32:1516–1529

    Article  Google Scholar 

  45. Kolb GJ, Diver RB, Siegel N (2007) Central-station solar hydrogen power plant. J Sol Energy Eng 129:179–183

    Article  Google Scholar 

  46. Perkins C, Weimer AW (2009) Solar-thermal production of renewable hydrogen. AICHE J 55:286–293

    Article  Google Scholar 

  47. Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2805–2822

    Article  Google Scholar 

  48. Kodama T (2003) High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energ Combust 29:567–597

    Article  Google Scholar 

  49. Kodama T, Gokon N (2007) Thermochemical cycles for high-temperature solar hydrogen production. Coordin Chem Rev 107:4048–4077

    Article  Google Scholar 

  50. Fletcher EA (2001) Solarthermal processing: a review. J Sol Energy Eng 123:63–74

    Article  Google Scholar 

  51. Inoue M, Hasegawa N, Uehara R, Gokon N, Kaneko H, Tamaura Y (2004) Solar hydrogen generation with H2O/ZnO/MnFe2O4 system. Sol Energy 76:309–315

    Article  Google Scholar 

  52. Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43:4714–4728

    Article  Google Scholar 

  53. Chueh WC, Haile SM (2009) Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem 2:735–739

    Article  Google Scholar 

  54. Nakamura T (1977) Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy 19:467–475

    Article  Google Scholar 

  55. Sibieude F, Ducarroir M, Tofighi A, Ambriz J (1982) High- temperature experiments with a solar furnace: the decomposition of Fe3O4, Mn3O4, CdO. Int J Hydrog Energy 7:79–88

    Article  Google Scholar 

  56. Bilgen E, Ducarroir M, Foex M, Sibieude F, Trombe F (1977) Use of solar energy for direct and two -step water decomposition cycles. Int J Hydrog Energy 2:251–257

    Article  Google Scholar 

  57. Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrog Energy 27:611–619

    Article  Google Scholar 

  58. Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrog Energy 29:1587–1599

    Article  Google Scholar 

  59. Loutzenhiser PG, Meier A, Steinfeld A (2010) Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 3:4922–4938

    Article  Google Scholar 

  60. Schunk L, Haeberling P, Wepf S, Wuillemin D, Meier A, Steinfeld A (2008) A solar receiver-reactor for the thermal dissociation of zinc oxide. J Sol Energy Eng 130:021009

    Article  Google Scholar 

  61. Müller R, Steinfeld A (2008) H2O-splitting thermochemical cycle based on ZnO-Zn-redox - Quenching the effluents from the ZnO dissociation. Chem Eng Sci 63:217–227

    Article  Google Scholar 

  62. Abanades S, Charvin P, Flamant G (2007) Design and simulation of a solar chemical reactor for the thermal reduction of metal oxides – Case study of zinc oxide dissociation. Chem Eng Sci 62:6323–6333

    Article  Google Scholar 

  63. Dombrovsky LA, Lipiński W, Steinfeld A (2007) A diffusion-based approximate model for radiation heat transfer in a solar thermochemical reactor. J Quant Spectrosc Radiat Transf 103:601–610

    Article  Google Scholar 

  64. Müller R, Steinfeld A (2007) Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. Sol Energy 81:1285–1294

    Article  Google Scholar 

  65. Müller R, Lipiński W, Steinfeld A (2008) Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. Appl Therm Eng 28:524–531

    Article  Google Scholar 

  66. Dombrovsky LA, Schunk L, Lipiński W, Steinfeld A (2009) An ablation model for the thermal decomposition of porous zinc oxide layer heated by concentrated solar radiation. Int J Heat Mass Transf 52:2444–2452

    Article  MATH  Google Scholar 

  67. Schunk LO, Lipiński W, Steinfeld A (2009) Ablative heat transfer in a shrinking packed-bed of ZnO undergoing solar thermal dissociation. AICHE J 55:1659–1666

    Article  Google Scholar 

  68. Schunk LO, Lipiński W, Steinfeld A (2009) Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW. Chem Eng J 150:502–508

    Article  Google Scholar 

  69. Weiss RJ, Ly HC, Wegner K, Pratsinis SE, Steinfeld A (2005) H2 production by Zn hydrolysis in a hot-wall aerosol reactor. AICHE J 51:1966–1970

    Article  Google Scholar 

  70. Wegner K, Ly HC, Weiss RJ, Pratsinis SE, Steinfeld A (2006) In situ formation and hydrolysis of Zn nanoparticles for H2 production by the two-step ZnO/Zn water-splitting thermochemical cycle. Int J Hydrog Energy 31:55–61

    Article  Google Scholar 

  71. Ernst FO, Tricoli A, Pratsinis SE, Steinfeld A (2006) Co-synthesis of H2 and ZnO by in-situ Zn aerosol formation and hydrolysis. AICHE J 52:3297–3303

    Article  Google Scholar 

  72. Funke HH, Diaz H, Liang X, Carney CS, Weimer AW, Lib P (2008) Hydrogen generation by hydrolysis of zinc powder aerosol. Int J Hydrog Energy 33:1127–1134

    Article  Google Scholar 

  73. Melchior T, Piatkowski N, Steinfeld A (2009) H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor. Chem Eng Sci 64:1095–1101

    Article  Google Scholar 

  74. Abu Hamed T, Venstrom L, Alshare A, Brülhart M, Davidson JH (2009) Study of a quench device for simultaneous synthesis and hydrolysis of Zn nanoparticles: modeling and experiments. J Sol Energy Eng 131:031018-1-9

    Article  Google Scholar 

  75. Abanades S, Charvin P, Lemont F, Flamant G (2008) Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen. Int J Hydrog Energy 33:6021–6030

    Article  Google Scholar 

  76. Charvin P, Abanades S, Bêche E, Lemont F, Flamant G (2009) Hydrogen production from mixed cerium oxides via three-step water-splitting cycles. Solid State Ionics 180:1003–1010

    Article  Google Scholar 

  77. Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330:1797–1801

    Article  Google Scholar 

  78. Lemort F, Charvin P, Lafon C, Romnicianu M (2006) Technological and chemical assessment of various thermochemical cycles: from the UT3 cycle up to the two steps iron oxide cycle. Int J Hydrog Energy 31:2063–2075

    Article  Google Scholar 

  79. Kodama T, Nakamuro Y, Mizuno T (2006) A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J Sol Energy Eng 128:3–7

    Article  Google Scholar 

  80. Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y (2007) Rotary-type solar reactor for solar hydrogen production with two-step water splitting process. Energy Fuel 21:2287–2293

    Article  Google Scholar 

  81. Diver RB, Miller JE, Allendorf MD, Siegel N, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130:041001–041001

    Article  Google Scholar 

  82. Roeb M, Neises M, Säck J-P, Rietbrock P, Monnerie N, Dersch J, Schmitz M, Sattler C (2009) Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrog Energy 34:4537–4545

    Article  Google Scholar 

  83. Meier A, Sattler C (2010) Solar fuels from concentrated sunlight. IEA SolarPACES Implementing Agreement, Tabernas. http://www.solarpaces.org/Library/docs/Solar_Fuels.pdf

    Google Scholar 

  84. Gálvez E, Loutzenhiser P, Hischier I, Steinfeld A (2008) CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: thermodynamic analysis. Energy Fuel 22:3544–3550

    Article  Google Scholar 

  85. Loutzenhiser PG, Gálvez ME, Hischier I, Stamatiou A, Frei A, Steinfeld A (2009) CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions II: kinetic analysis. Energy Fuel 23:2832–2839

    Article  Google Scholar 

  86. Nikulshina V, Hirsch D, Mazzotti M, Steinfeld A (2006) CO2 capture from air and co-production of H2 via the Ca(OH)2-CaCO3 cycle using concentrated solar power - thermodynamic analysis. Energy 31:1379–1389

    Article  Google Scholar 

  87. Nikulshina V, Steinfeld A (2009) CO2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor – effect of temperature and water vapor concentration. Chem Eng J 155:867–873

    Article  Google Scholar 

  88. Nikulshina V, Gebald C, Steinfeld A (2009) CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chem Eng J 146:244–248

    Article  Google Scholar 

  89. Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions. Chem Mater 22:851–859

    Article  Google Scholar 

  90. Stamatiou A, Loutzenhiser PG, Steinfeld A (2010) Solar syngas production from H2O and CO2 via two-step thermochemical cycles based on Zn/ZnO and FeO/Fe3O4 redox reactions: kinetic analysis. Energy Fuel 24:2716–2722

    Article  Google Scholar 

  91. Mantzaras J (2008) Catalytic combustion of syngas. J Combust Sci Technol 180:1137–1168

    Article  Google Scholar 

  92. Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241

    Article  Google Scholar 

  93. Dahl J, Buechler K, Finley R, Stanislaus T, Weimer A, Lewandowski A, Bingham C, Smeets A, Schneider A (2004) Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Energy 29:715–725

    Article  Google Scholar 

  94. Maag G, Zanganeh G, Steinfeld A (2009) Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon. Int J Hydrog Energy 34:7676–7685

    Article  Google Scholar 

  95. Rodat S, Abanades S, Flamant G (2009) High-temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823-2073 K. Energy Fuel 23:2666–2674

    Article  Google Scholar 

  96. Möller S, Kaucic D, Sattler C (2006) Hydrogen production by solar reforming of natural gas: a comparison study of two possible process configurations. J Sol Energy Eng 128:16–23

    Article  Google Scholar 

  97. Petrasch J, Meier F, Friess H, Steinfeld A (2008) Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics. Int J Heat Fluid Flow 29:315–326

    Article  Google Scholar 

  98. Petrasch J, Wyss P, Stämpfli R, Friess H, Steinfeld A (2008) Tomography-based multi-scale analyses of the 3D geometrical morphology of reticulated porous ceramics. J Am Ceram Soc 91:2659–2665

    Article  Google Scholar 

  99. Dahl JK, Weimer AW, Lewandowski A, Bingham C, Brütsch F, Steinfeld A (2004) Dry reforming of methane using a solar-thermal aerosol flow reactor. Ind Eng Chem Res 43:5489–5495

    Article  Google Scholar 

  100. Lovegrove K, Luzzi A, Soldiani I, Kreetz H (2004) Developing ammonia based thermochemical energy storage for dish power plants. Sol Energy 76:331–337

    Article  Google Scholar 

  101. Z'Graggen A, Haueter P, Maag G, Vidal A, Romero M, Steinfeld A (2007) Hydrogen production by steam-gasification of petroleum coke using concentrated solar power – III. Reactor experimentation with slurry feeding. Int J Hydrog Energy 32:992–996

    Article  Google Scholar 

  102. Z'Graggen A, Steinfeld A (2009) Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy – V. reactor modeling, optimization, and scale-up. Int J Hydrog Energy 33:5484–5492

    Article  Google Scholar 

  103. Piatkowski N, Wieckert C, Steinfeld A (2009) Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks. Fuel Process Technol 90:360–366

    Article  Google Scholar 

  104. Melchior T, Perkins C, Lichty P, Weimer AW, Steinfeld A (2009) Solar-driven biochar gasification in a particle-flow reactor. Chem Eng Process 48:1279–1287

    Article  Google Scholar 

  105. Lichty P, Perkins C, Woodruff B, Bingham C, Weimer AW (2010) Rapid high temperature solar thermal biomass gasification in a prototype cavity reactor. J Sol Energy Eng 132:011012–011011

    Article  Google Scholar 

  106. Service RF (2009) Sunlight in your tank. Science 326:1471–1475

    Article  Google Scholar 

  107. Villasmil W, Steinfeld A (2010) Hydrogen production by hydrogen sulfide splitting using concentrated solar energy – thermodynamics and economic evaluation. Energy Conv Manag 51:2353–2361

    Article  Google Scholar 

  108. Murray JP (1999) Aluminum-silicon carbo-thermal reduction using high-temperature solar process heat. In: Eckert CE (ed) Light metals. The Minerals, Metals, and Materials Society, Warrendale, pp 399–405

    Google Scholar 

  109. Kruesi M, Galvez ME, Halmann M, Steinfeld A (2011) Solar aluminum production by vacuum carbothermal reduction of alumina - thermodynamic and experimental analyses. Metall Mater Trans B Process Metall Mater Process Sci 42B:254–260

    Article  Google Scholar 

  110. Loutzenhiser P, Tuerk O, Steinfeld A (2010) Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy. J Metals 62:49–54

    Google Scholar 

  111. Flamant G, Kurtcuoglu V, Murray J, Steinfeld A (2006) Purification of metallurgical grade silicon by a solar process. Sol Energy Mater Sol Cells 90:2099–2106

    Article  Google Scholar 

  112. Guillard T, Alvarez L, Anglaret E, Sauvajol JL, Bernier P, Flamant G, Laplaze D (1999) Production of fullerenes and carbon nanotubes by the solar energy route. J Phys IV France 9:399–404

    Article  Google Scholar 

  113. Luxembourg D, Flamant G, Laplaze D (2005) Solar synthesis of single-walled carbon nanotubes at medium scale. Carbon 43:2302–2310

    Article  Google Scholar 

  114. Meier A, Kirillov V, Kuvshinov G, Mogilnykh Y, Reller A, Steinfeld A, Weidenkaff A (1999) Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic filamentous carbon. Chem Eng Sci 54:3341–3348

    Article  Google Scholar 

  115. Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 20:325–330

    Article  Google Scholar 

  116. Meier A, Bonaldi E, Cella GM, Lipinski W (2005) Multitube rotary kiln for the industrial solar production of lime. J Sol Energy Eng 127:386–395

    Article  Google Scholar 

  117. Schaffner B, Meier A, Wuillemin D, Hoffelner W, Steinfeld A (2003) Recycling of hazardous solid waste material using high-temperature solar process heat. 2. Reactor design and experimentation. Environ Sci Technol 37:165–170

    Article  Google Scholar 

  118. Funken K-H, Roeb M, Schwarzboezl P, Warneke H (2001) Aluminum remelting using directly solar-heated rotary kilns. J Sol Energy Eng 123:117–124

    Article  Google Scholar 

  119. Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Möller S (2009) Prospects of solar thermal hydrogen production processes. Int J Hydrog Energy 34:4256–4267

    Article  Google Scholar 

  120. Felder R, Meier A (2008) Well-to-wheel analysis of solar hydrogen production and utilization for passenger car transportation. J Sol Energy Eng 130:011017–011011

    Article  Google Scholar 

Books and Reviews

  • Wieckert C, Epstein M, Olalde G, Santén S, Steinfeld A (2009) Zinc electrodes: solar thermal production. In: Garche J (ed) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 469–486

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meier, A., Steinfeld, A. (2022). Solar Energy in Thermochemical Processing. In: Alexopoulos, S., Kalogirou, S.A. (eds) Solar Thermal Energy. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1422-8_689

Download citation

Publish with us

Policies and ethics