Skip to main content

Estimation of Concentrated Solar Power Potential

Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC,

Glossary

Central receiver system:

Solar power plant system in which solar radiation is converted by a heliostat field onto a tower-mounted solar receiver.

CRS:

Concentrating receiver system, see central receiver system, synonym

CSP:

Concentrated Solar Power. Energy conversion technologies in which concentrating the intensity of incoming solar radiation allows for higher thermal potential CSP plants generate electricity by converting solar energy into high-temperature heat using various mirror configurations.

DNI:

Radiant flux density in the solar spectrum (0.3–3 μm) incident at the earth’s surface perpendicular to the direction to the sun integrated over a small cone tracing the sun

E:

Exa 1018

P:

Peta 1015

PTC:

Parabolic trough collectors

Radiation:

Emission and propagation of electromagnetic energy through space or material

T:

Tera 1012

Abbreviations

appr.:

approximate

ASI:

Australian Solar Institute

DLR:

German Aerospace Center, Germany

DNI:

Direct Normal Irradiance

...

Keywords

  • Solar potential
  • Concentrated solar power
  • Methodology
  • DNI
  • Map
  • Factors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Dobritzsch B, Gehling M, Ackermann S (2009) Projektarbeit für Systemorientierte Rahmenbedingungen Akademie für Erneuerbare Energien 2009

    Google Scholar 

  2. Chiemelu NE, Anejionu PCD, Ndukwu RI, Okeke FI (2021) Assessing the potentials of largescale generation of solar energy in Eastern Nigeria with geospatial technologies Scientific African 12:2468–2276

    Google Scholar 

  3. https://www.dlr.de/tt/desktopdefault.aspx/tabid-2885/4422_read-16596/ DLR accessed on June 6th 2021

  4. Trieb F, Schillings C, O’Sullivan M, Pregger T, Hoyer-Klick C (2009) Global potential of concentrating solar power SolarPaces conference Berlin, September 2009

    Google Scholar 

  5. International Energy Association (2021). https://www.iea.org

  6. Greenpeace, SolarPACES and ESTELA (2009) Sauberer Strom aus den Wüsten Globaler Ausblick auf die Entwicklung solarthermischer Kraftwerke 2009

    Google Scholar 

  7. Pitz-Paal R (2015) Solarthermische Kraftwerke Technologiesteckbrief zur Analyse “Flexibilitätskonzepte für die Stromversorgung 2050”

    Google Scholar 

  8. Winston R, Minano JC, Benitez P (2005) Nonimaging optics. Elsevier Academic Press, Burlington, p 1217

    Google Scholar 

  9. Janjai S, Laksanaboonsong J, Seesaard T (2011) Potential application of concentrating solar power systems for the generation of electricity in Thailand. Appl Energy 88:4960–4967

    CrossRef  Google Scholar 

  10. Affandi R, Ab Ghani MR, Gan CK, Zanariah J (2013) A review of concentrating solar power (CSP) in Malaysian environment. Int J Eng Adv Technol (IJEAT) 3(2):December 2013

    Google Scholar 

  11. 4echile Chile es el país Con la Mayor radiación del Mundo (2019) Available online: http://4echile.cl/chile-pais-lamayor-radiacion-del-mundo/

  12. Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G, Shelby J (2018) The National Solar Radiation Data Base (NSRDB). Renew Sust Energ Rev 89(June):51–60

    CrossRef  Google Scholar 

  13. CSP today (2008) An overview of CSP in Europe, North Africa and the Middle East CSP Today, London. October 2008

    Google Scholar 

  14. Telsnig T (2015) Standortabhängige Analyse und Bewertung solarthermischer Kraftwerke am Beispiel Südafrikas Doktorarbeit Universität Stuttgart 2015

    Google Scholar 

  15. Fichter T, Trieb F, Moser M (2014) Optimized integration of renewable energy technologies into Jordan’s power plant portfolio, accepted by Heat Transfer Eng, Volume 35, Issue 3, 2014

    Google Scholar 

  16. European Commission (2007) Report on the workshop on concentrated solar power technology online

    Google Scholar 

  17. Concentrating Solar Power for the Mediterranean Region (2005) Final presentation & report DLR 2005

    Google Scholar 

  18. Mohammadi K, Khorasanizadeh H (2019) The potential and deployment viability of concentrated solar power (CSP) in Iran. Energ Strat Rev 24:358–369

    CrossRef  Google Scholar 

  19. Zhang R (2019) Solarpotentialanalyse von konzentrierter Solarthermie (CSP) für Chinas Provinz Qinghai Bachelorarbeit FH Aachen

    Google Scholar 

  20. Lin Y (2016) Solarpotentialanalyse von konzentrierter Solarthermie (CSP) für die Provinz Xizang Chinas Bachelorarbeit FH Aachen

    Google Scholar 

  21. Trieb F, O’Sullivan M, Pregger T, Schillings C, Krewitt W (2009) Characterisation of solar electricity import corridors from MENA to Europe report DLR 2009

    Google Scholar 

  22. Stoffel T, Renné D, Myers D, Wilcox S, Sengupta M, George R, Turchi C (2010) Best practices handbook for the collection and use of solar resource data NREL technical report, 2010

    Google Scholar 

  23. Potential for Renewable Energy in the San Diego Region (2005) Appendix E: Solar thermal concentrated solar power August 2005

    Google Scholar 

  24. Sengupta M, Habte A, Gueymard C, Wilbert S, Renné D, Stoffel T (2017) Best practices handbook for the collection and use of solar resource data for solar energy applications: second edition NREL technical report, 2017

    Google Scholar 

  25. NASA (2016) Atmospheric Science Data Centre https://eosweb.larc.nasa.gov/

  26. Simons S, McCabe J (2005) California solar resources in support of the 2005 integrated energy policy report

    Google Scholar 

  27. SWERA (2011) Solar irradiation datasets for the use with geographic information systems. Sol Wind Energy Res Assess 10 February 2011. Online at http://swera.unep.net

    Google Scholar 

  28. Qu H, Zhao J, Yu X, Cui J (2008) Prospect of concentrating solar power in China – the sustainable future. Renew Sust Energ Rev 12:2505–2514

    CrossRef  Google Scholar 

  29. Marzo A, Zarzalejo LF, Ibarra M, Navarro AA, Soto G, Ramirez L, Escobar R, Silva-Pérez M (2018) Towards the Chilean solar thermal potential knowledge for solar power tower plants. In: Proceedings of the AIP conference, Surakarta, Indonesia, 15 May 2018, vol 2033. AIP Publishing, Melville, p 170008

    Google Scholar 

  30. Ziuku S, Seyitini L, Mapurisa B, Chikodzi D, van Koen K (2014) Potential of concentrated solar power (CSP) in Zimbabwe. Energy Sustain Dev 23:220–227

    CrossRef  Google Scholar 

  31. Malagueta D, Szklo A, Soria R, Dutra R, Schaeffer R, Borba BSMC (2014) Potential and impacts of concentrated solar power (CSP) integration in the Brazilian electric power system, renew. Energy 68:223–235

    Google Scholar 

  32. Concentrating Solar Power Technology Brief (2013) IEA-ETSAP and IRENA, 2013, http://www.irena.org/

  33. Vogel W, Kalb H (2010) Large-scale solar thermal power technologies, cost and development. Wiley-VCh

    CrossRef  Google Scholar 

  34. Klaiß H, Staiß F (1992) Solarthermische Kraftwerke für den Mittelmeerraum, Springer

    Google Scholar 

  35. Fluri T P, Cuevas F, Pidaparthi P, Platzer W J (2011) Assessment of the potential for concentrating solar power in Northern Chile SolarPACES 2011

    Google Scholar 

  36. Nazli B, Aydin Y (2009) GIS-based site selection approach for wind and solar energy systems: a case study from western Turkey a thesis submitted to the graduate school of natural and applied sciences of Middle East Technical University in partial fulfilment of the requirements for the degree of master of science in geodetic and geographic information technologies

    Google Scholar 

  37. Carrión JA, Estrella AE, Dols FA, Toro MZ, Rodríguez M, Ridao AR (2008) Environmental decision-support systems for evaluating the carrying capacity of land areas: optimal site selection for grid-connected photovoltaic power plants. Renew Sust Energ Rev 12:2358–2380

    CrossRef  Google Scholar 

  38. Kronshage S (2001) Standortanalyse für solarthermische Kraftwerke am Beispiel des Königreichs Marokko. Diploma Thesis, DLR Stuttgart and University of Osnabrück, Germany

    Google Scholar 

  39. San Diego Regional Renewable Energy Study Group (2005) Potential for renewable energy in the San Diego region August 2005

    Google Scholar 

  40. National Renewable Energy Laboratory (2009) Solar Technology BLM –Arizona Lands Training, June 25, 2008; presentation available at: http://www.blm.gov; (date of last visit: Oct. 27, 2010)

  41. Gazzo A, Gousseland P, Verdier J, Kost C, Morin G, Engelken M, Schof J, Nitz P, Selt J, Platzer W, Ragwitz M, Boie I, Hauptstock D, Eichhammer W (2011) Middle East and North Africa region assessment of the local manufacturing potential for concentrated solar power (CSP) Projects Report 2011

    Google Scholar 

  42. Tanaya LA (2021) Potential of concentrated solar power in East Nusa Tenggara. Indonesia Bachelorarbeit FH Aachen

    Google Scholar 

  43. Google Earth (2021). https://www.google.com/intl/de_de/earth/

  44. Solarthermische Kraftwerke Wärme, Strom und Brennstoffe aus konzentriererter Sonnenenergie (2021) DLR Köln, Februar 2021

    Google Scholar 

  45. Rulamahue (2011) GISDATA Chile. http://www.rulamahue.cl/mapoteca/catalogos/chile.html

  46. NASA (2011) Global land use datasets. http://data.giss.nasa.gov/landuse/

  47. DIVA-GIS (2011) Administrative areas (boundaries) http://www.diva-gis.org/gdata

  48. He G, Kammen DM (2016) Where, when and how much solar is available? A provincial-scale solar resource assessment for China. Renew Energy 85:74–82

    CrossRef  Google Scholar 

  49. Li Y, Liao S, Rao Z, Liu G (2014) A dynamic assessment based feasibility study of concentrating solar power in China. Renew Energy 69:34–42

    CrossRef  Google Scholar 

  50. Azoumah Y, Ramdé E, Tapsoba G, Thiam S (2010) Siting guidelines for concentrating solar power plants in the Sahel: case study of Burkina Faso. Sol Energy 2010(84):1545–1553

    CrossRef  Google Scholar 

  51. Concentrated Solar Power for Lebanon (2012) A techno-economic assessment 2012

    Google Scholar 

  52. Australian Solar Institute (ASI) (2012) Realising the potential of concentrating solar power in Australia. Prepared by IT Power Pty Ltd for the Australian Solar Institute, Australia, 2012

    Google Scholar 

  53. Hernández C, Barraza R, Saez A, Ibarra M, Estay D (2020) Potential map for the installation of concentrated solar power towers in Chile. Energies 2020(13):2131. https://doi.org/10.3390/en13092131

    CrossRef  Google Scholar 

  54. Ministerio de Energía (2011) Energy Infrastructure. http://www.minenergia.cl

  55. Latzke M, Alexopoulos S, Kronhardt V, Rendon C, Sattler J (2015) Comparison of potential sites in China for erecting a hybrid solar tower power plant with air receiver. Energy Procedia 69:1327–1334

    CrossRef  Google Scholar 

  56. Kronshage S, Trieb F (2002) Berechnung von Weltpotenzialkarten. Erstellung einer Expertise für den Wissenschaftlichen Beirat der Bundesregierung Globale Umweltveränderung (WBGU). Internal Documentation, DLR, Stuttgart

    Google Scholar 

  57. Cooke RU, Warren A, Goudie AS (1993) Desert geomorphology. UCLPress Limited, University College, London

    CrossRef  Google Scholar 

  58. Avery C, Consoli C, Glennon R, Megdal S (2007) Good intentions, unintended consequences: The Central Arizona Groundwater Replenishment District Ariz. L. Rev 49:339–359

    Google Scholar 

  59. Public Utilities Fortnightly (2008) PV vs. Solar thermal report. Online. Available at: http://www.bateswhite.com/news/pdf/07012008_BusinessMoney.pdf

  60. Technology Roadmap Concentrating Solar Power (2010) IEA OECD

    Google Scholar 

  61. Balghouthi M, Trabelsi SE, Amara MB, Hadj Ali AB, Guizani A (2016) Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe. Renew Sust Energ Rev 56:1227–1248

    CrossRef  Google Scholar 

  62. Fluri TP (2009) The potential of concentrating solar power in South Africa. Energy Policy 37:5075–5080

    CrossRef  Google Scholar 

  63. Ondrey G (2017) The future looks bright for concentrated solar power 2017 www.helioscsp.com

  64. Zhuang X, Hu X, Liu W, Xu W (2019) LCOE analysis of tower concentrating solar power plants using different molten-salts for thermal energy storage in China. Energies 12:1394

    CrossRef  Google Scholar 

  65. Dawson L, Schlyter P (2012) Less is more: strategic scale site suitability for concentrated solar thermal power in Western Australia. Energy Policy 47:91–101

    CrossRef  Google Scholar 

  66. United States Department of Energy (DoE) (2017) Concentrating solar power commercial application study: reducing water consumption of concentrating solar power electricity generation. 2017

    Google Scholar 

  67. Fichter T, Trieb F, Moser M, Kern J (2013) Optimized integration of renewable energies into existing power plant portfolios SolarPACES. Energy Procedia 49:1858–1868

    CrossRef  Google Scholar 

  68. Bravo J, Casals X, Pascua I (2007) GIS approach to the definition of capacity and generation ceilings of renewable energy technologies. Energy Policy 35:4879–4892

    CrossRef  Google Scholar 

  69. Dahle D, Elliot D, Heimiller D (2008) Assessing the potential for renewable energy development on DOE legacy management lands. NREL, Golden, Colorado

    CrossRef  Google Scholar 

  70. Karstaedt R, Dahle D, Heimiller D, Nealon T (2005) Assessing the potential for renewable energy on National Forest System Lands. U.S. Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  71. Kirby M, Dahle D, Heimiller D (2003) Assessing the potential for renewable energy on public lands. U.S. Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  72. Broesamle H, Mannstein H, Schillings C, Trieb F (2001) Assessment of solar electricity potentials in North Africa based on satellite data and a geographic information system. Sol Energy J 70:1–12

    CrossRef  Google Scholar 

  73. Trieb F, Quaschning V, Schillings C, Kronshage S, Brischke L, Czisch G (2002) Potenziale, Standortanalysen, Stromtransport FVS. Themenheft 2002:36–43

    Google Scholar 

  74. Sengupta M, Habte A, Wilbert S, Gueymard C, Remund J (2021) Best practices handbook for the collection and use of solar resource data for solar energy applications, 3rd edn. National Renewable Energy Laboratory, Golden, CO. NREL/TP-5D00-77635

    CrossRef  Google Scholar 

  75. Explorador Solar. Available online: http://www.minenergia.cl/exploradorsolar/

  76. Molina A, Falvey M, Rondanelli R (2017) A solar radiation database for Chile. Sci Rep 2017(7):1–11

    Google Scholar 

  77. Navarro AA, Ramírez L, Domínguez P, Blanco M, Polo J, Zarza E (2016) Review and validation of solar thermal electricity potential methodologies. Energy Conver Manag 126:42–50. https://doi.org/10.1016/j.enconman.2016.07.070

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros Alexopoulos .

Editor information

Editors and Affiliations

Section Editor information

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alexopoulos, S. (2022). Estimation of Concentrated Solar Power Potential. In: Alexopoulos, S., Kalogirou, S.A. (eds) Solar Thermal Energy. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1422-8_1127

Download citation