Skip to main content

Dynamical Behavior of CSP Plants

  • Reference work entry
  • First Online:
Solar Thermal Energy
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC,

Glossary

Concentrated Solar Power (CSP):

Renewable energy plant that produces electricity by means of solar irradiation. A specific of concentrated solar power is that the incoming sunlight is optically concentrated by parabolically shaped mirrors. The concentrated solar flux allows heating of a medium to temperatures of 200–1000 °C. Such high temperature medium can be stored before the heat is used in a steam power cycle to generate electricity.

Parabolic trough plant:

A CSP system that uses line focusing concentrators in the form of parabolic troughs. The receiver is arranged in the focal line of the concentrator.

Solar tower plant:

A CSP system that uses optical concentration onto a small aperture area located at the top of a tower. A large number of heliostats forms the solar field. The mirror area of each heliostat can be tracked in two axes such that the reflection of the incoming sunlight is always onto the aperture area.

Dynamic:

The term “dynamic” describes a technical process...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Hirsch T, Dersch J, Fluri T, Garcia-Barbarena J, Giuliano S, Hustig-Diethelm F, Meyer R, Schmidt N, Seitz M, Yildiz E (2017) SolarPACES guideline for bankable STE yield assessment – version 2017, IEA Technology Collaboration Programme SolarPACES

    Google Scholar 

  2. Fernández-García A et al (2010) Parabolic-trough solar collectors and their applications. Renew Sust Energ Rev 14:1695–1721

    Article  Google Scholar 

  3. Giostri A, Binotti M, Astolfi M, Silva P, Macchi E, Manzolini G (2012) Comparison of different solar plants based on parabolic trough technology. Sol Energy 86:1208–1221

    Article  Google Scholar 

  4. Sanda A, Moya SL, Valenzuela L (2019) Modelling and simulation tools for direct steam generation in parabolictrough solar collectors: a review. Renew Sust Energ Rev 113:1–57

    Article  Google Scholar 

  5. Hirsch T, Feldhoff JF, Hennecke K, Pitz-Paal R (2013) Advancements in the field of direct steam generation in linear solar concentrators – a review. Heat Transfer Eng 35(3):258–271

    Article  Google Scholar 

  6. Noureldin K (2018) Modelling and control of transients in parabolic trough power plants with single-phase heat transfer fluids. RWTH Aachen University (Germany)

    Google Scholar 

  7. Lippke F (1995) Simulation of the part-load behavior of a 30 MWe SEGS plant. Sandia National Laboratories, Albuquerque. SAND95-1293

    Google Scholar 

  8. Suojanen S, Hakkarainen E, Tähtinen M, Sihvonen T (2017) Modeling and analysis of process configurations for hybrid concentrated solar power and conventional steam power plants. Energy Convers Manag 134:327–339

    Article  Google Scholar 

  9. Kattea Al-Maliki WA et al (2016) Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days. Appl Therm Eng 99:114–132

    Article  Google Scholar 

  10. Scherer V et al (2007) Process dynamics of fossil steam power plants induced by the integration of transient solar heat. 2004 New and Renewable Energy Technologies for Sustainable Development, pp 193–203

    Google Scholar 

  11. Russo V (2014) CSP plant thermal-hydraulic simulation. Energy Procedia 49:1533–1542

    Article  Google Scholar 

  12. Serrano-Aguilera JJ, Valenzuela L, Parras L (2017) Thermal hydraulic RELAP5 model for a solar direct steam generation system based on parabolic troughs collectors operating in once-through mode. Energy 133:798–807

    Article  Google Scholar 

  13. Hoffmann A, Merk B, Hirsch T, Pitz-Paal R (2014) Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET. Kerntechnik 79(3):175–186

    Article  Google Scholar 

  14. Elmqvist H (1978) A structured model language for large continuous systems. PhD thesis; Lund Institute of Technology, Sweden

    Google Scholar 

  15. Zaversky F, Medina R, García-Barberena J, Sánchez M, Astrain D (2013) Object-oriented modeling for the transient performance simulation of parabolic trough collectors using molten salt as heat transfer fluid. Sol Energy 95:192–215

    Article  Google Scholar 

  16. García-Barberena J, Ubani N (2015) Adjustment and validation of a simulation tool for CSP plants based on parabolic trough technology. AIP Conf Proc 1734(160050):1–9

    Google Scholar 

  17. Desideri A et al (2018) Steady-state and dynamic validation of a parabolic trough collector model using the ThermoCycle Modelica library. Sol Energy 174:866–877

    Article  Google Scholar 

  18. Noureldin K, Hirsch T, Pitz-Paal R (2017) Virtual solar field – validation of a detailed transient simulation tool for line focus STE fields with single phase heat transfer fluid. Sol Energy 146:131–140

    Article  Google Scholar 

  19. Ma L et al (2019) Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages. Front Energy 14(2):283–297

    Google Scholar 

  20. Giostri A (2014) Transient effects in linear concentrating solar thermal power plant. Dissertation for the doctoral degree. Politecnico Di Milano, Italy

    Google Scholar 

  21. Stuetzle T et al (2004) Automatic control of a 30 MWe SEGS VI parabolic trough plant. Sol Energy 76(1–3):187–193

    Article  Google Scholar 

  22. Powell KM, Edgar TF (2012) Modeling and control of a solar thermal power plant with thermal energy storage. Chem Eng Sci 71:138–145

    Article  Google Scholar 

  23. Camacho EF, Rubio FR, Berenguel M, Valenzuela L (2007) A survey on control schemes for distributed solar collector fields. Part I: modeling and basic control approaches. Sol Energy 81:1240–1251

    Article  Google Scholar 

  24. Camacho EF, Rubio FR, Berenguel M, Valenzuela L (2007) A survey on control schemes for distributed solar collector fields. Part II: advanced control approaches. Sol Energy 81:1252–1272

    Article  Google Scholar 

  25. Gallego AJ, Camacho EF (2012) Adaptative state-space model predictive control of a parabolic-trough field. Control Eng Pract 20:904–911

    Article  Google Scholar 

  26. Galvez-Carrillo M, De Keyser R, Ionescu C (2009) Nonlinear predictive control with dead-time compensator: application to a solar power plant. Sol Energy 83:743–752

    Article  Google Scholar 

  27. do Amaral Burghi AC (2016) Transient simulation of line-focus solar thermal power plants. DLR Institute of Solarforschung. Master thesis

    Google Scholar 

  28. Abutayeh M et al (2019) Effect of short cloud shading on the performance of parabolic trough solar power plants: motorized vs manual valves. Renew Energy 142:330–344

    Article  Google Scholar 

  29. Navas SJ et al (2018) Optimal control applied to distributed solar collector fields with partial radiation. Sol Energy 159:811–819

    Article  Google Scholar 

  30. Karamali M, Khodabandeh M (2017) A distributed solar collector field temperature profile control and estimation using inlet oil temperature and radiation estimates based on Iterative Extended Kalman Filter. Renew Energy 101:144–155

    Article  Google Scholar 

  31. Hirsch T et al (2012) Start-up modeling for annual CSP yield calculations. J Solar Energy Eng 134(3):031004–031009

    Article  Google Scholar 

  32. Zaversky F et al (2014) Transient behavior of an active indirect two-tank thermal energy storage system during changes in operating mode – an application of an experimentally validated numerical model. Energy Procedia 49:1078–1087

    Article  Google Scholar 

  33. Pacheco JE (2002) Final test and evaluation results from the solar two project. SANDIA National Laboratories. Project Report SAND2002-0120

    Google Scholar 

  34. Litwin R (2002) Receiver system: lessons learned from Solar Two. SANDIA National Laboratories. Project Report SAND2002-0084

    Google Scholar 

  35. Zavoico A (2001) Solar power tower design basis document. SANDIA National Laboratories. Project Report SAND2001-2100

    Google Scholar 

  36. Uhlig R, Frantz C, Flesch R, Fritsch A (2018) Stress analysis of external molten salt receiver. In: AIP conference proceedings, 2033(1). SolarPACES 2017, 26.–29 Sept 2017, Santiago de Chile. https://doi.org/10.1063/1.5067076

  37. Vant-Hull LL (2002) The role of “Allowable flux density” in the design and operation of molten-salt solar central receivers. J Solar Energy Eng 124(2):165–169

    Article  Google Scholar 

  38. Flesch R, Högemann D, Hackmann J, Uhlig R, Schwarzbözl P, Augsburger G, Clark M (2017) Dynamic modeling of molten salt power towers. AIP Conf Proc 1850(1):030016. https://doi.org/10.1063/1.4984359

    Article  Google Scholar 

  39. Augsburger G, Favrat D (2013) Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant. Sol Energy 87:42–52

    Article  Google Scholar 

  40. Quesada-Ruiz S, Chu Y, Tovar-Pescador J, Pedro H, Coimbra C (2014) Cloud tracking methodology for intra-hour DNI forecasting. Sol Energy 102:267–275

    Article  Google Scholar 

  41. Kazantzidis A, Tzoumanikas P, Blanc P, Massip P, Wilbert S, Ramirez-Santigosa L (2017) Short-term forecasting based on all-sky cameras. In: Renewable energy forecasting. Woodhead Publishing series in energy. Woodhead Publishing, Stefan, Bijan, bitte beantworten. Habe dazu nochts gefunden. pp 153–178

    Google Scholar 

  42. Blanc P, Massip P, Kazantzidis A, Tzoumanikas P, Kuhn P, Wilbert S, Schüler D, Prahl C (2017) Short-term forecasting of high resolution local DNI maps with multiple fish-eye cameras in stereoscopic mode. AIP conference proceedings 1850

    Google Scholar 

  43. Nouri B, Wilbert S, Segura L, Kuhn P, Hanrieder N, Kazantzidis A, Schmidt T, Zarzalejo L, Blanc P, Pitz-Paal R (2019) Determination of cloud transmittance for all sky imager based solar nowcasting. Sol Energy 181:251–263

    Article  Google Scholar 

  44. Kuhn P, Nouri B, Wilbert S, Prahl C, Kozonek N, Schmidt T, Yasser Z, Ramirez L, Zarzalejo L, Meyer A, Vuilleumier L, Heinemann D, Blanc P, Pitz-Paal R (2017) Validation of an all-sky imager-based nowcasting system for industrial PV plants. Prog Photovolt Res Appl. Bijan, Stefan

    Google Scholar 

  45. Nouri B, Kuhn P, Wilbert S, Hanrieder N, Prahl C, Zarzalejo L, Kazantzidis A, Blanc P, Pitz-Paal R (2019) Cloud height and tracking accuracy of three all sky imager systems for individual clouds. Sol Energy 177:213–228

    Article  Google Scholar 

  46. Nouri B, Kuhn P, Wilbert S, Prahl C, Pitz-Paal R, Blanc P, Schmidt T, Yasser Z, Ramirez Santigosa L, Heineman D (2018) Nowcasting of DNI maps for the solar field based on voxel carving and individual 3D cloud objects from all sky images. AIP Conference Proceedings 2033

    Google Scholar 

  47. Nouri B, Wilbert S, Kuhn P, Hanrieder N, Schroedter-Homscheidt M, Kazantzidis A, Zarzalejo L, Blanc P, Kumar S, Goswami N, Shankar R, Affolter R, Pitz-Paal R (2019) Real-time uncertainty specification of all sky imager derived irradiance nowcasts. Remote Sens 11(9):1059

    Article  Google Scholar 

  48. Schroedter-Homscheidt M, Kosmale M, Jung S, Kleissl J (2018) Classifying ground-measured 1 minute temporal variability within hourly intervals for direct normal irradiances. Meteorol Z. Bijan, Stefan

    Google Scholar 

  49. Nouri B, Noureldin K, Schlichting T, Wilbert S, Hirsch T, Schroedter-Homscheidt M, Kuhn P, Kazantzidis A, Zarzalejo LF, Blanc P, Fernández J, Pitz-Paal R (2019) Optimization of parabolic trough power plant operation using irradiance maps from all sky imagers. Sol Energy 198:434–453

    Article  Google Scholar 

  50. Flesch R, Frantz D, Maldonado QD, Schwarzbözl P (2017) Towards an optimal aiming for molten salt power towers. Sol Energy 155:1273–1281. ISSN: 0038-092X, https://doi.org/10.1016/j.solener.2017.07.067

  51. Stoddard M, Faas S, Chiang C, Dirks J (1987) SOLERGY – A computer code for calculating the annual energy from central receiver power plants, SAND86-8060, Sandia National Laboratories, Livermore, CA

    Google Scholar 

  52. Cocco D, Migliari L, Serra F (2015) Influence of thermal energy losses on the yearly performance of medium size CSP plants. 28th International Conference on Efficiency, Cost, Optimization. Simulation and Environmental Impact of Energy Systems, Pau, France

    Google Scholar 

  53. Ehrhart BD, Gill DD (2013) Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage, Sandia Report SAND2013-5493, Sandia national Laboratories, Albuquerque, NM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hirsch .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hirsch, T. et al. (2022). Dynamical Behavior of CSP Plants. In: Alexopoulos, S., Kalogirou, S.A. (eds) Solar Thermal Energy. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1422-8_1101

Download citation

Publish with us

Policies and ethics