Skip to main content

Parabolic Trough and Solar Tower Power Plants, Measuring Systems, Testing, and Monitoring Methods

  • Reference work entry
  • First Online:
Solar Thermal Energy
  • 1155 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC,

Glossary

CSP maintenance:

Maintenance tasks on solar power plants

CSP measuring systems:

All kind of detecting and measurement systems around solar power plants

Deflectometry:

In this context, contactless detection or measurement of reflective surfaces

DNI:

Directly normal solar radiation

Flux density measurement:

Measurement system for radiation flux density

GHI:

Global horizontal solar irradiation

Irradiation measurement:

Standardized examination of solar light

Laser scan:

Automatic detector system using LASER distance sensors for 3D-scans

Photogrammetry:

Combined photo technique and analyzing systems to receive geometry data of photographed areas

Sunshine forecast:

Analysis of weather or other data to forecast the time of sunshine

Test methods:

In this context, all kind of measurement systems around solar power plants

Definition of the Subject

To develop, check installation, perform maintenance measure, and operate CSP technology in all this points optimally, the systems and the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leuenberger B (2018) Ertragssteigerung von Parabolrinnenkraftwerken durch systematisches Anlagenmonitoring. (TSK Flagsol); 21. Sonnenkolloquium 2018 DLR, Cologne

    Google Scholar 

  2. Turchi CS, Heath GA (2013) Molten salt power tower cost model for the system advisor model (SAM). Technical report: NREL/TP-5500-57625. Golden, Colorado

    Google Scholar 

  3. Stein JS, Perez R, Parkins A (2010) Validation of PV performance models using satellite-based irradiance measurements. In: ASES National solar conference 2010 Phoenix, May 19, 2010

    Google Scholar 

  4. Ramírez L, Hanrieder N, Zarzalejo LF, Landelius T, Müller SC, Schroedter-Homscheidt M, Wilbert S, Dubrana J, Remund J, María Vindel J, Valenzuela RX (2017) Optimized DNI forecast using combinations of DNICast-Project nowcastings outputs. SolarPACES 2017, Santiago de Chile September 26–29 2017

    Google Scholar 

  5. Hirsch T (2016) Einstrahlungsvorhersage. 19. Sonnenkolloquium 2016, DLR, Cologne

    Google Scholar 

  6. Nouri B et al (2020) Optimization of parabolic trough power plant operation using irradiance maps from all sky imagers. Solar Energy 198:434–453

    Article  Google Scholar 

  7. Kuhn P et al (2017) Validation of an all-sky imager-based nowcasting system for industrial PV plants. Prog Photovolt Res Appl. https://doi.org/10.1002/pip.2968

  8. Nouri B et al (2019) Cloud height and tracking accuracy of three all sky imager systems for individual clouds. Solar Energy 177:213–228

    Article  Google Scholar 

  9. Fivian M, Hudson H, Lin R, Zahid J (2008) A large excess in apparent solar oblateness due to surface magnetism. Science Express, October, 2nd issue. http://science.nasa.gov/headlines/y2008/02oct_oblatesun.htm. Accessed 10 Feb 2008

  10. Williams DR (2004) Sun fact sheet. NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html. Accessed 21 Dec 2011

  11. Neumann A, Witzke A, Scott J, Schmitt G (2002) Representative terrestrial solar brightness profiles. ASME J Solar Energy Eng 124:S198–S204

    Article  Google Scholar 

  12. Wilbert S, Wolfertstetter F, Hanrieder N, Nouri B, Kuhn P, Röger M, Prahl C (2018) Erfassung und Vorhersage der Umweltbedingungen für optimalen Kraftwerksbetrieb. 21. Sonnenkolloquium 2018, DLR, Cologne

    Google Scholar 

  13. Rahlves M, Seewig J (2009) Optisches Messen Technischer Oberflächen: Messprinzipien und Begriffe. Beuth Verlag, Berlin, p 17

    Google Scholar 

  14. Xiao J, Weia X, Lu Z, Yu W, Wu H (2012) A review of available methods for surface shape measurement of solar concentrator in solar thermal power applications. Renew Sustain Energy Rev 16(5):2539–2544

    Article  Google Scholar 

  15. Huke P, Burke J, Bergmann RB (2014) A comparative study between deflectometry and shearography for detection of subsurface defects. In: Proceedings of the SPIE 9203, Interferometry XVII: techniques and analysis, 92030C, 18 August 2014

    Google Scholar 

  16. Ulmer S, März T, Prahl C et al (2009) Automated high resolution measurement of heliostat slope errors. SolarPACES, Berlin

    Google Scholar 

  17. Pottler (2010) Information provided by K. Pottler. DLR

    Google Scholar 

  18. Pottler K, Ulmer S, Lüpfert E, Landmann M, Röger M, Prahl C (2014) Ensuring performance by geometric quality control and specifications for parabolic trough solar fields; SolarPACES 2013; ScienceDirect. Energy Proc 49:2170–2179

    Article  Google Scholar 

  19. Jones SA, Neal DR, Gruetzner JK et al (1996) VSHOT: a tool for characterizing large, imprecise reflectors. In: International symposium on optical science engineering and instrumentation, 8–9 August 1996, Denver

    Google Scholar 

  20. Nelson A et al (2011) Understanding soil adhesion in concentrating solar power plants: a novel analysis of soil characteristics. In: Proceedings of Solar PACES 2011, Granada

    Google Scholar 

  21. Cohen GE et al (1999) Final report on the operation and maintenance improvement program for concentrating solar power plants. SAND99-1290

    Google Scholar 

  22. Fernández-Reche J (2005) Reflectance measurement in solar tower heliostat fields. Solar Energy 80(2006):779–786

    Google Scholar 

  23. Ho CK et al (2011) On-sun testing of a heliostat using facets with metallized polymer films. In: Proceedings of SolarPACES2011, Granada

    Google Scholar 

  24. Heimsath A et al (2010) Soiling of aluminum and glass mirrors under different climatic conditions and techno-economic optimization of cleaning intervals. SolarPACES 2010, Perpignan

    Google Scholar 

  25. Pettit RB, Freese JM (1980) Wavelength dependent scattering caused by dust accumulation on solar mirrors. Solar Energy Mater 3:1–20

    Article  Google Scholar 

  26. Meyen S, Lüpfert E, Fernández-García A, Kennedy C (2010) Standardization of solar mirror reflectance measurements. SolarPACES 2010, Perpignan

    Google Scholar 

  27. Crawford JS, Stewart J, Pérez-Ullivarri JA (2012) A comparison of three portable reflectometers for use in operations and maintenance of csp plants. SolarPACES 2012, Marrakech

    Google Scholar 

  28. Eitan A, Hayut R, Kroyzer G, Schwarzbach J (2013) Methods and systems for operating solar tower systems. Brightsource Ind Israel; 201310082059; US 201261610845 20120314

    Google Scholar 

  29. Jiangye L, Peng Z, Xiaoling M, Xuemei Z (2012) Method for quickly positioning solar faculae. Zhejiang Supcon Solar Energy Technology; 201110447938

    Google Scholar 

  30. Ambrus C, Azarchs AD, Hartshorn MB, Reznik DS (2010) Calibration and tracking control of heliostats in a central tower receiver solar power plant. ESOLAR INC 200880122596

    Google Scholar 

  31. Azarchs AD, Csaszar A, Hartshorn MB, Reznik DS (2010) Calibration and tracking control of heliostats in a central tower receiver solar power plant. ESOLAR INC, 08843313; US 2008081036 20081023, US 25736808 20081023, US 35807 20071024

    Google Scholar 

  32. Pottler K, Prahl C, Röger M, Ulmer, S (2011) Method for measuring solar thermal concentrator, involves recording images of solar thermal concentrator with camera, where target is arranged in front of solar thermal concentrator during recording. DLR; DE102011080969A1

    Google Scholar 

  33. Biegel G, Essen H, Goettsche J, Hoffschmidt B, Luedtke G, Sauerborn M (2012) Method for aligning the heliostats of a heliostat field. Deutsch Zentrum Luft & Raumfahrt, Fraunhofer Ges. Forschung; DE 102009032584 20090710; EP 2010059933 20100709

    Google Scholar 

  34. Dabrowksi J, Göttsche J, Nettelroth V, Sauerborn M (2014) Method for position- and orientation determination of heliostat having mirror face, involves irradiating mirror face of heliostat with laser beam having predetermined wavelength. German Aerospace Center

    Google Scholar 

  35. Quero Reboul JM, Rodríguez Alcón M (2014) System for positioning a reflective surface in relation to the sun, using a solar sensor and the reflected light. University Sevilla; ES 2013000047 20130222, ES 201200181 20120222

    Google Scholar 

  36. Gilon Y, Kroyzer G, Van Dyke M (2011) Systems and methods for arranging, maintaining, or operating heliostats in a solar field. Brightsource Ind Israel; Patent No. Wo002011106665a2

    Google Scholar 

  37. Prahl C, Porcel L, Röger M, Algner N (2018) Airborne characterization of the Andasol 3 solar field. AIP Conf Proc 2033(1):030013

    Article  Google Scholar 

  38. Prahl C, Stanicki B, Hilgert C, Ulmera S, Röger M (2013) Airborne shape measurement of parabolic trough collector fields. Solar Energy 91:68–78

    Article  Google Scholar 

  39. Montecchi M, King P, Setien Solas E, Albert R (2018) New methodologies for on-site characterization of line-focus solar collectors’ fields. Final report on autonomous robot and UAV with remote sensing capability for large solar fields, STAGE-STE Project

    Google Scholar 

  40. Thelen M, Willsch C, Raeder C, Dibowski G, Röger M, Offergeld M (2016) Entwicklungslinien zur Flussdichtemesstechnik der DLR-Solarforschung. 19. Sonnenkolloquium 2016, DLR, Cologne

    Google Scholar 

  41. Anthrakidis A, Herrmann U, Schorn C, Schwarzer K, Wedding P, Weis F (2015) Entwicklung und Bewertung eines Parabolrinnenkollektor-Prototyps. 25. OTTI Symposium Thermische Solarenergie, Bad Staffelstein

    Google Scholar 

  42. Riffelmann K-J, Ulmer S, Neumann A (2006) Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region. Solar Energy 80(10):1303–1313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Sauerborn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sauerborn, M. (2022). Parabolic Trough and Solar Tower Power Plants, Measuring Systems, Testing, and Monitoring Methods. In: Alexopoulos, S., Kalogirou, S.A. (eds) Solar Thermal Energy. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1422-8_1056

Download citation

Publish with us

Policies and ethics