Skip to main content

Continuous Handwritten Script Recognition

  • Reference work entry
  • First Online:

Abstract

The transcription of written text images is one of the most challenging tasks in document analysis since it has to cope with the variability and ambiguity encountered in handwritten data. Only in a very restricted setting, as encountered in postal addresses or bank checks, transcription works well enough for commercial applications. In the case of unconstrained modern handwritten text, recent advances have pushed the field towards becoming interesting for practical applications. For historic data, however, recognition accuracies are still far too low for automatic systems. Instead, recent efforts aim at interactive solutions in which the computer merely assists an expert creating a transcription. In this chapter, an overview of the field is given and the steps along the processing chain from the text line image to the final output are explained, starting with image normalization and feature representation. Two recognition approaches, based on hidden Markov models and neural networks, are introduced in more detail. Finally, databases and software toolkits are presented, and hints to further material are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arica N, Yarmal-Vural FT (2002) Optical character recognition for cursive handwriting. IEEE Trans Pattern Anal Mach Intell 24(6):801–814

    Article  Google Scholar 

  2. Ahmed P, Suen CY (1987) Computer recognition of totally unconstrained handwritten zip codes. Int J Pattern Recognit Artif Intell 1(1):1–15

    Article  Google Scholar 

  3. Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41(1):164–171

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazzi I, Schwartz R, Makhoul J (1999) An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans Pattern Anal Mach Intell 21(6):495–505

    Article  Google Scholar 

  5. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient decent is difficult. IEEE Trans Neural Netw 5(2):157–166

    Article  Google Scholar 

  6. Boz̆inović RM, Srihari S (1989) Off-line cursive script word recognition. IEEE Trans Pattern Anal Mach Intell 11(1):68–83

    Google Scholar 

  7. Brakensiek A, Rigoll G (2004) Handwritten address recognition using hidden Markov models. In: Dengel A et al (eds) Reading and learning. Volume 2956 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 103–122

    Chapter  Google Scholar 

  8. Caillault É, Viard-Gaudin C (2007) Mixed discriminant training of hybrid ANN/HMM. Int J Pattern Recognit Artif Intell 21(1):117–134

    Article  Google Scholar 

  9. Chen J, Cao H, Prasad R, Bhardwaj A, Natarajan P (2010) Gabor features for offline Arabic handwriting recognition. In: 9th IARP international workshop on document analysis systems, Boston, pp 53–58

    Google Scholar 

  10. Collobert R, Bengio S, Mariéthoz J (2002) TORCH: a modular machine learning software library. Technical report IDIAP-RR 02-46, IDIAP Research Institute

    Google Scholar 

  11. Dietterich T (2009) Machine learning for sequential data: a review. In: Caelli T, Amin A, Duin R, de Ridder D, Kamel M (eds) Structural, syntactic, and statistical pattern recognition. Volume 2396 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 227–246

    Google Scholar 

  12. Do TMT, Artieres T (2006) Conditional random fields for online handwriting recognition. In: International workshop of frontiers in handwriting recognition, La Baule, pp 197–204

    Google Scholar 

  13. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  14. España-Boquera S, Castro-Bleda MJ, Gorbe-Moya J, Zamora-Martinez F (2010) Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans Pattern Anal Mach Intell 33(4):767–779

    Article  Google Scholar 

  15. Fischer A, Bunke H (2009) Kernel PCA for HMM-based cursive handwriting recognition. In: 13th international conference on computer analysis of images and pattern, Münster, pp 181–188

    Google Scholar 

  16. Fischer A, Riesen K, Bunke H (2010) Graph similarity features for HMM-based handwriting recognition in historical documents. In: 12th international conference on frontiers in handwriting recognition, Kolkata. pp 253–258

    Google Scholar 

  17. Fischer A, Keller A, Frinken V, Bunke H (2011, submitted) Lexicon-free handwritten word spotting using character HMMs pattern recognition letters 33(7):934–942

    Google Scholar 

  18. Frinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2), pp 211, 224

    Article  Google Scholar 

  19. Gader PD, Mohamed MA, Chiang J-H (1995) Comparison of crisp and fuzzy character neural network in handwritten word recognition. IEEE Trans Fuzzy Syst 3(3):357–364

    Article  Google Scholar 

  20. Gader PD, Mohamed MA, Chiang J-H (1997) Handwritten word recognition with character and inter-character neural networks. IEEE Trans Syst Man Cybern 27(1):158–164

    Article  Google Scholar 

  21. Goodman JT (2001) A bit of progress in language modeling – extended version. Technical report MSR-TR-2001-72, Microsoft Research, One Microsoft Way Redmond, WA 98052, 8

    Google Scholar 

  22. Gorski N, Anisimov V, Augustin E, Baret O, Maximov S (2001) Industrial bank check processing: the A2iA CheckReader(tm). Int J Doc Anal Recognit 3(4):196–206

    Article  Google Scholar 

  23. Graves A (2012) Supervised sequence labelling with recurrent neural networks. Springer, Heidelberg/New York/Dordrecht/London

    Book  MATH  Google Scholar 

  24. Graves A, Schmidhuber J (2009) Offline handwriting recognition with multidimensional recurrent neural networks. In: Koller D et al (eds) Advances in neural information processing systems 21. MIT Press, Cambridge, pp 545–552

    Google Scholar 

  25. Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell 31(5):855–868

    Article  Google Scholar 

  26. Guyon I, Schomaker L, Plamondon R, Liberman M, Janet S (1994) UNIPEN project of on-line data exchange and recognizer benchmarks. In: 12th international conference on pattern recognition, Jerusalem, pp 29–33

    Google Scholar 

  27. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18

    Article  Google Scholar 

  28. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  29. Jiang H (2005) Confidence measures for speech recognition: a survey. Speech Commun 45:455–470

    Article  Google Scholar 

  30. Johanson S, Leech GN, Goodluck H (1978) Manual of information to accompany the Lancaster-Oslo/Bergen corpus of British English, for use with digital computers. Technical report, Department of English, University of Oslo, Norway

    Google Scholar 

  31. Kavallieratou E, Fakotakis N, Kokkinakis GK (2002) An unconstrained handwriting recognition system. Int J Doc Anal Recognit 4(4):226–242

    Article  Google Scholar 

  32. Knerr S, Augustin E, Baret O, Price D (1998) Hidden Markov model based word recognition and its application to legal amount reading on French checks. Comput Vis Image Underst 70(3):404–419

    Article  Google Scholar 

  33. Koerich AL, Sabourin R, Suen CY (2003) Lexicon-driven HMM decoding for large vocabulary handwriting recognition with multiple character models. Int J Doc Anal Recognit 6:126–144

    Article  Google Scholar 

  34. Lee S-W (ed) (1999) Advances in handwriting recognition. World Scientific, Singapore/River Edge/London

    Google Scholar 

  35. Liwicki M, Graves A, Bunke H (2012) Neural networks for handwriting recognition. In: Ogiela MR, Jain LC (eds) Computation cation, vol 386/2012. Springer, Berlin/Heidelberg, pp 5–24

    Chapter  Google Scholar 

  36. Lorigo LM, Govindaraju V (2006) Offline Arabic handwriting recognition: a survey. IEEE Trans Pattern Anal Mach Intell 28(5):712–725

    Article  Google Scholar 

  37. Marti U-V (2000) Off-line recognition of handwritten texts. PhD thesis, University of Bern, Bern

    Google Scholar 

  38. Marti U-V, Bunke H (2001) Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system. Int J Pattern Recognit Artif Intell 15:65–90

    Article  Google Scholar 

  39. Marti U-V, Bunke H (2002) The IAM-database: an English sentence database for offline handwriting recognition. Int J Doc Anal Recognit 5:39–46

    Article  MATH  Google Scholar 

  40. Ogawa A, Takeda K, Itakura F (1998) Balancing acoustic and linguistic probabilities. In: International conference on acoustic, speech, and signal processing, Seattle, pp 181–184

    Google Scholar 

  41. O’Reilly RC, Frank MJ (2003) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Ics-03-03, ICS, Mar 2003

    MATH  Google Scholar 

  42. Pechwitz M, Maergner V (2003) HMM based approach for handwritten Arabic word recognition using the IFN/ENIT-database. In: 7th international conference on document analysis and recognition, Edinburgh, pp 890–894

    Google Scholar 

  43. Plötz T, Fink G (2011) Markov models handwriting recognition. Springer, London/Dordrecht/ Heidelberg/New York

    Book  MATH  Google Scholar 

  44. Pramod Sankar K, Ambati V, Pratha L, Jawahar CV (2006) Digitizing a million books: challenges for document analysis. In: 7th IAPR workshop on document analysis systems, Nelson, pp 425–436

    Google Scholar 

  45. Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  46. Rath TM, Manmatha R (2007) Word spotting for historical documents. Int J Doc Anal Recognit 9:139–152

    Article  Google Scholar 

  47. Rodríguez JA, Perronnin F (2008) Local gradient histogram features for word spotting in unconstrained handwritten documents. In: 11th international conference frontiers in handwriting recognition, Montréal, pp 7–12

    Google Scholar 

  48. Rodríguez-Serrano JA, Perronnin F, Sánchez G, Lladós J (2010) Unsupervised writer adaptation of whole-word HMMs with application to word-spotting. Pattern Recognit Lett 31(8):742–749

    Article  Google Scholar 

  49. Rutovitz D (1966) Pattern recognition. J R Stat Soc A (General) 129(4):504–530

    Article  Google Scholar 

  50. Sayre KM (1973) Machine recognition of handwritten words: a project report. Pattern Recognit 3(3):213–228

    Article  Google Scholar 

  51. Seiler R, Schenkel M, Eggimann F (1996) Off-line cursive handwriting recognition compared with on-line recognition. In: 13th international conference on pattern recognition, Vienna, vol 4, pp 505–509

    Google Scholar 

  52. Senior AW, Robinson AJ (1998) An off-line cursive handwriting recognition system. IEEE Trans Pattern Anal Mach Intell 20(3):309–321

    Article  Google Scholar 

  53. Srihari SN, Srinivasan H, Huang C, Shetty S (2006) Spotting words in Latin, Devanagari and Arabic scripts. Indian J Artif Intell 16(3):2–9

    Google Scholar 

  54. Stolke A (2002) SRILM – an extensible language modeling toolkit. In: International conference on spoken language processing, Denver, pp 901–904

    Google Scholar 

  55. Taira E, Uchida S, Sakoe H (2004) Nonuniform slant correction for handwritten word recognition. IEICE Trans Inf Syst E87-D(5):1247–1253

    Google Scholar 

  56. Terasawa K, Tanaka Y (2009) Slit style HOG features for document image word spotting. In: 10th international conference on document analysis and recognition, Barcelona, vol 1, pp 116–120

    Google Scholar 

  57. Toselli AH, Juan A, González J, Salvador I, Vidal E, Casacuberta F, Keysers D, Ney H (2004) Integrated handwritten recognition and interpretation using finite-state models. Int J Pattern Recognit Artif Intell 18(4):519–539

    Article  Google Scholar 

  58. Toselli AH, Vidal E, Casacuberta F (2011) Multimodal interactive pattern recognition and applications. Springer, London/New York

    Book  MATH  Google Scholar 

  59. van der Zant T, Schomaker L, Haak K (2008) Handwritten-word spotting using biologically inspired features. IEEE Trans Pattern Anal Mach Intell 30(11):1945–1957

    Article  Google Scholar 

  60. Vinciarelli A (2002) A survey on off-line cursive word recognition. Pattern Recognit 35(7):1433–1446

    Article  MATH  Google Scholar 

  61. Vinciarelli A (2003) Offline cursive handwriting: from word to text recognition. Technical report IDIAP-PP 03-24, Institut Dalle Molle Intelligance Artificielle Perceptive (IDIAP), Martigny

    Google Scholar 

  62. Vinciarelli A, Bengio S, Bunke H (2004) Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans Pattern Anal Mach Intell 26(6): 709–720

    Article  Google Scholar 

  63. Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13:260–269

    Article  MATH  Google Scholar 

  64. Werbos PJ (1988) Generalization of backpropagation to a recurrent gas model. Neural Netw 1:339–356

    Article  Google Scholar 

  65. Wienecke M, Fink GA, Gerhard S (2005) Toward automatic video-based whiteboard reading. Int J Doc Anal Recognit 7:188–200

    Article  Google Scholar 

  66. Young S, Evermann G, Gales M, Hain T, Kershaw D, Liu X, Moore G, Odell J, Ollason D, Povey D, Valtchev V, Woodland P (2006) The HTK book. Technical report, Cambridge University Engineering Department, Dec 2006

    Google Scholar 

Further Reading

  • Fischer A, Keller A, Frinken V, Bunke H (2011, submitted) Lexicon-free handwritten word spotting using character HMMs

    Google Scholar 

  • Frinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell. Accepted for publication

    Google Scholar 

  • Goodman JT (2001) A bit of progress in language modeling – extended version. Technical report MSR-TR-2001-72, Microsoft Research, One Microsoft Way Redmond, WA 98052, 8

    Google Scholar 

  • Graves A (2012) Supervised sequence labelling with recurrent neural networks. Springer, Heidelberg/New York/Dordrecht/London

    Book  MATH  Google Scholar 

  • Jiang H (2005) Confidence measures for speech recognition: a survey. Speech Commun 45:455–470

    Article  Google Scholar 

  • Liwicki M, Graves A, Bunke H (2012) Neural networks for handwriting recognition. In: Ogiela MR, Jain LC (eds) Computational intelligence paradigms in advanced pattern classification, vol 386/2012. Springer, Berlin/Heidelberg, pp 5–24

    Chapter  Google Scholar 

  • Plötz T, Fink G (2011) Markov models handwriting recognition. Springer, London/Dordrecht/ Heidelberg/New York

    Google Scholar 

  • Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Toselli AH, Vidal E, Casacuberta F (2011) Multimodal interactive pattern recognition and applications. Springer, London/New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Frinken, V., Bunke, H. (2014). Continuous Handwritten Script Recognition. In: Doermann, D., Tombre, K. (eds) Handbook of Document Image Processing and Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-859-1_12

Download citation

Publish with us

Policies and ethics