Skip to main content

Situational Awareness and Road Prediction for Trajectory Control Applications

  • Reference work entry
Book cover Handbook of Intelligent Vehicles

Abstract

Situational awareness is of paramount importance in all advanced driver assistance systems. Situational awareness can be split into the tasks of tracking moving vehicles and mapping stationary objects in the immediate surroundings of the vehicle as it moves. This chapter focuses on the map estimation problem. The map is constructed from sensor measurements from radars, lasers and/or cameras, with support from on-board sensors for compensating for the ego-motion.

Four different types of maps are discussed:

  1. (i)

    Feature-based maps are represented by a set of salient features, such as tree trunks, corners of buildings, lampposts and traffic signs.

  2. (ii)

    Road maps make use of the fact that roads are highly structured, since they are built according to clearly specified road construction standards. This allows relatively simple and powerful models of the road to be employed.

  3. (iii)

    Location-based maps consist of a grid, where the value of each element describes the property of the specific coordinate.

  4. (iv)

    Finally, intensity-based maps can be considered as a continuous version of the location-based maps.

The aim is to provide a self-contained presentation of how these maps can be built from measurements. Real data from Swedish roads are used throughout the chapter to illustrate the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Björck Å (1996) Numerical methods for least squares problems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Blackman SS, Popoli R (1999) Design and Analysis of Modern Tracking Systems. Artech House, Norwood

    MATH  Google Scholar 

  • Borenstein J, Koren Y (1991) The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans Robot Automation 7(3):278–288

    Article  Google Scholar 

  • Buehler M, Iagnemma K, Singh S (eds) (2008) Special issue on the 2007 DARPA urban challenge, Part I-III. J Field Rob 25:8–10

    Google Scholar 

  • Caveney D (2010) Cooperative vehicular safety applications. IEEE Control Syst Mag 30(4):38–53

    Article  MathSciNet  Google Scholar 

  • Civera J, Davison A, Montiel J (2008) Inverse depth parametrization for monocular SLAM. IEEE Trans Rob 24(5):932–945

    Article  Google Scholar 

  • Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes, vol 1, 2nd edn, Elementary theory and method. Springer, New York

    MATH  Google Scholar 

  • Davison AJ, Reid I, Molton N, Strasse O (2007) MonoSLAM: Real-time single camera SLAM. IEEE Trans Patterns Anal Mach Intell 29(6):1052–1067

    Article  Google Scholar 

  • Dickmanns E (1988) Dynamic computer vision for mobile robot control. In: Proceedings of the international symposium on industrial robots, Sydney

    Google Scholar 

  • Dickmanns ED (2007) Dynamic vision for perception and control of motion. Springer, London

    Google Scholar 

  • Dickmanns ED, Mysliwetz BD (1992) Recursive 3-D road and relative ego-state recognition. IEEE Trans Pattern Anal Mach Intell 14(2):199–213

    Article  Google Scholar 

  • Diversi R, Guidorzi R, Soverini U (2005) Kalman filtering in extended noise environments. IEEE Trans Autom Control 50(9):1396–1402

    Article  MathSciNet  Google Scholar 

  • Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15

    Article  Google Scholar 

  • Eidehall A, Pohl J, Gustafsson F, Ekmark J (2007) Toward autonomous collision avoidance by steering. IEEE Trans Intell Transp Syst 8(1):84–94

    Article  Google Scholar 

  • Elfes A (1987) Sonar-based real-world mapping and navigation. IEEE J Robot Automation 3(3):249–265

    Article  Google Scholar 

  • Erdinc O, Willett P, Bar-Shalom Y (2009) The bin-occupancy filter and its connection to the PHD filters. IEEE Trans Signal Process 57(11):4232–4246

    Article  MathSciNet  Google Scholar 

  • Gilholm K, Salmond D (2005) Spatial distribution model for tracking extended objects. IEE Proc Radar Sonar Navigation 152(5):364–371

    Article  Google Scholar 

  • Gill PE, Murray W, Saunders MA, Wright MH (1991) Inertia-controlling methods for general quadratic programming. SIAM Rev 33(1):1–36

    Article  MathSciNet  MATH  Google Scholar 

  • Goldfarb D, Idnani A (1983) A numerically stable dual method for solving strictly convex quadratic programs. Math Program 27(1):1–33

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc Radar Signal Process 140(5):107–113

    Article  Google Scholar 

  • Guiducci A (1999) Parametric model of the perspective projection of a road with applications to lane keeping and 3D road reconstruction. Comput Vis Image Underst 73(3):414–427

    Article  MATH  Google Scholar 

  • Guiducci A (2000) Camera calibration for road applications. Comput Vis Image Underst 79(2):250–266

    Article  Google Scholar 

  • Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the Alvey vision conference, Manchester, pp 147–151

    Google Scholar 

  • Hough PVC (1962) A method and means for recognizing complex patterns. US Patent 3,069,654

    Google Scholar 

  • Jung CR, Kelber CR (2005) Lane following and lane departure using a linear-parabolic model. Image Vis Comput 23(13):1192–1202

    Article  Google Scholar 

  • Kim ZW (2008) Robust lane detection and tracking in challenging scenarios. IEEE Trans Intell Transp Syst 9(1):16–26

    Article  Google Scholar 

  • Lee JW (2002) A machine vision system for lane-departure detection. Comput Vis Image Underst 86(1):52–78

    Article  MATH  Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  • Lundquist C, Schön TB (2011) Joint ego-motion and road geometry estimation. Inf Fusion 12(4):253–263

    Article  Google Scholar 

  • Lundquist C, Hammarstrand L, Gustafsson F (2011a) Road intensity based mapping using radar measurements with a probability hypothesis density filter. IEEE Trans Signal Process 59(4):1397–1408

    Google Scholar 

  • Lundquist C, Orguner U, Gustafsson F (2011b) Extended target tracking using polynomials with applications to road-map estimation. IEEE Trans Signal Process 59(1):15–26

    Article  MathSciNet  Google Scholar 

  • Mahler RPS (2003) Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst 39(4):1152–1178

    Article  Google Scholar 

  • Mahler RPS (2007) Statistical multisource-multitarget information fusion. Artech House, Boston

    MATH  Google Scholar 

  • Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide baseline stereo from maximally stable extremal regions. Image Vis Comput 22(10):731–767

    Google Scholar 

  • McCall JC, Trivedi MM (2006) Video-based lane estimation and tracking for driver assistance: servey, system, and evaluation. IEEE Trans Intell Transp Syst 7(1):20–37

    Article  Google Scholar 

  • Moravec H (1988) Sensor fusion in certainty grids for mobile robots. AI Mag 9(2):61–74

    Google Scholar 

  • Nistér D, Naroditsky O, Bergen J (2006) Visual odometry for ground vehicle applications. J Field Rob 23(1):3–20

    Article  MATH  Google Scholar 

  • Powell M (1985) On the quadratic programming algorithm of Goldfarb and idnani. Math Program Study 25(1):46–61

    Article  MATH  Google Scholar 

  • Rohling H, Meinecke MM (2001) Waveform design principles for automotive radar systems. In: Proceedings on CIE international conference on radar, Beijing, pp 1–4

    Google Scholar 

  • Rohling H, Möller C (2008) Radar waveform for automotive radar systems and applications. In: IEEE radar conference, Rome, pp 1–4

    Google Scholar 

  • Sidenbladh H (2003) Multi-target particle filtering for the probability hypothesis density. In: Proceedings of the international conference on information fusion, Cairns, vol 2, pp 800–806

    Google Scholar 

  • Söderström T (2007) Survey paper: errors-in-variables methods in system identification. Automatica 43(6):939–958

    Article  MathSciNet  MATH  Google Scholar 

  • Szeliski R (2010) Computer vision: algorithms and applications. Springer, New York

    Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Vo B-N, Ma W-K (2006) The Gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process 54(11):4091–4104

    Article  Google Scholar 

  • Vo B-N, Singh S, Doucet A (2003) Random finite sets and sequential monte carlo methods in multi-target tracking. In: Proceedings of the international radar conference, Adelaide, pp 486–491

    Google Scholar 

  • Vu TD, Aycard O, Appenrodt N (2007) Online localization and mapping with moving object tracking in dynamic outdoor environments. In: Proceedings of the IEEE intelligent vehicles symposium. Istanbul, pp 190–195

    Google Scholar 

  • Wang Y, Bai L, Fairhurst M (2008) Robust road modeling and tracking using condensation. IEEE Trans Intell Transp Syst 9(4):570–579

    Article  Google Scholar 

  • Waxman A, LeMoigne J, Davis L, Srinivasan B, Kushner T, Liang E, Siddalingaiah T (1987) A visual navigation system for autonomous land vehicles. IEEE J Robot Automation 3(2):124–141

    Article  Google Scholar 

  • Zhou Y, Xu R, Hu X, Ye Q (2006) A robust lane detection and tracking method based on computer vision. Meas Sci Technol 17(4):736–745

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the SEnsor Fusion for Safety (SEFS) project within the Intelligent Vehicle Safety Systems (IVSS) program, the strategic research center MOVIII, funded by the Swedish Foundation for Strategic Research (SSF) and CADICS, a Linneaus Center funded by be Swedish Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lundquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Ltd.

About this entry

Cite this entry

Lundquist, C., Schön, T.B., Gustafsson, F. (2012). Situational Awareness and Road Prediction for Trajectory Control Applications. In: Eskandarian, A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_15

Download citation

Publish with us

Policies and ethics