Skip to main content

Neutron Cross Section Measurements

  • Reference work entry
Handbook of Nuclear Engineering

Abstract

This chapter gives an overview of neutron-induced cross section measurements, both past and present. A selection of the principal characteristics of time-of-flight and monoenergetic fast neutron facilities is given together with several examples of measurements. The physics of typical neutron cross sections and their measurements are explained in detail. Finally an overview of the R-matrix formalism, which is at the basis of resonance reactions, is given. The many references provide a starting point for the interested reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbondanno U et al (2003) CERN n_TOF facility: performance report. Tech. Rep. ERNSL-2002-053 ECT

    Google Scholar 

  • Abbondanno U et al (2004) New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl Instrum Methods Phys Res Sect A 521(2–3):454–467

    Article  Google Scholar 

  • Abbondanno U et al (2005) The data acquisition system of the neutron time-of-fight facility n_TOF at CERN. Nucl Instrum Methods Phys Res Sect A 538(1–3):692

    Article  Google Scholar 

  • Abfalterer WP, Finlay RW, Grimes SM (2000) Level widths and level densities of nuclei in the 32 ≤ A ≤ 60 mass region inferred from fluctuation analysis of total neutron cross sections. Phys Rev C 62(6):064312

    Article  Google Scholar 

  • Abramowitz M (1965) Handbook of mathematical functions with formulas, graphs, and mathematical table. Dover Publications, New York

    Google Scholar 

  • Adler DB, Adler FT (1972) Uniqueness of R-matrix parameters in the analysis of low-energy neutron cross sections of fissile nuclei. Phys Rev C 6:986–1001

    Article  Google Scholar 

  • Ait-Tahar S, Hodgson PE (1987) Weisskopf-Ewing calculations – neutron-induced reactions. J Phys G 13(7):945–956

    Article  Google Scholar 

  • Allmond JM, Bernstein LA, Beausang CW et al (2009) Relative U-235(n,gamma) and (n,f) cross sections from U-235(d,p gamma) and (d,pf). Phys Rev C 79(5):054610

    Article  Google Scholar 

  • Amaldi E, Fermi E (1936) On the absorption and the diffusion of slow neutrons. Phys Rev 50: 899

    Article  Google Scholar 

  • Ananiev VD et al (2005) Intense resonance neutron source (IREN) – new pulsed source for nuclear physical and applied investigations. Phys Elementary Part At Nuclei (PEPAN) 126: 11–18

    Google Scholar 

  • Asami A (1973) JAERI new linac. J At Energy Soc Jpn 15:37–42

    Article  Google Scholar 

  • Baba M (2005) Experimental studies on particle and radionuclide production cross sections for tens of MeV neutrons and protons. AIP 769:884–889

    Google Scholar 

  • Baba M, Ibaraki M, Miura T et al (2002) Experiments on neutron scattering and fission neutron spectra. J Nucl Sci Technol 1(suppl. 2):204–209

    Google Scholar 

  • Barry DP (2003) Neodymium neutron transmission and capture measurements and development of a new transmission detector. PhD thesis, Rensselaer Polytechnic Institute

    Google Scholar 

  • Bauge E, Delaroche JP, Giro M (2001) Lane-consistent, semimicroscopic nucleon-nucleus optical model. Phys Rev C 63:024607

    Article  Google Scholar 

  • Beer H, Kappeler F (1979) Capture-to-fission ratio of U-235 in the neutron energy-range from 10 to 500 keV. Phys Rev C 20(1):201–211

    Article  Google Scholar 

  • Beer H, Kappeler F (1980) Neutron-capture cross-sections on Ba-138, Ce-140, Ce-142, Lu-175, Lu-176, and Ta-181 at 30 keV – prerequisite for investigation of the Lu-176 cosmic clock. Phys Rev C 21(2):534–544

    Article  Google Scholar 

  • Behrens JW, Browne JC, Ables E (1982) Measurement of the neutron-induced fission cross-section of Th-232 relative to U-235 from 0.7 to 30 MeV. Nucl Sci Eng 81(4):512–519

    Google Scholar 

  • Belikov OV et al (2010) Physical start-up of the first stage of IREN facility. J Phys Conference Series 205:012053

    Article  Google Scholar 

  • Bernstein LA et al (2002) Pu-239(n,2n) Pu-238 cross section deduced using a combination of experiment and theory. Phys Rev C 65(2): 021601

    Article  Google Scholar 

  • Biro T, Sudar S, Miligy, Z, Dezso Z, and Csikai, J (1975) Investigations of (n,t) cross sections at 14.7 MeV. J Inorg Nucl Chem 37(7–8):1583–1585.

    Article  Google Scholar 

  • Blatt JM, Biedenharn LC (1952) The angular distribution of scattering and reaction cross sections. Rev Mod Phys 24(4):258–272

    Article  MATH  Google Scholar 

  • Block RC, Marano PJ, Drindak NJ et al (1988) A multiplicity detector for accurate low-energy neutron capture measurements. In: Proceedings of the international conference on nuclear data for science and technology, Mito, p 383

    Google Scholar 

  • Blons J (1973) High-resolution measurements of neutron-induced fission cross-sections for U-233 U-235 Pu-239 and Pu-241 below 30 keV. Nucl Sci Eng 51(2):130–147

    Google Scholar 

  • Bohigas O, Giannoni MJ, Schmit C (1984) Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys Rev Lett 52: 1–4

    Article  MathSciNet  MATH  Google Scholar 

  • Bohr N (1936) Neutron capture and nuclear constitution. Nature 137:344

    Google Scholar 

  • Borcea C et al (2003) Results from the commissioning of the n_TOF spallation neutron source at CERN. Nucl Instrum Methods Phys Res Sect A 51:524–537

    Article  Google Scholar 

  • Borella A, Aerts G, Gunsing F et al (2007a) The use of C6D6 detectors for neutron induced capture cross-section measurements in the resonance region. Nucl Instrum Methods Phys Res Sect A 577(3):626–640

    Article  Google Scholar 

  • Borella A, Gunsing F, Moxon M et al (2007b) High-resolution neutron transmission and capture measurements of the nucleus Pb-206. Phys Rev C 76(1):014605

    Article  Google Scholar 

  • Boyer S, Dassie D, Wilson JN et al (2006) Determination of the 233Pa(n,gamma) capture cross section up to neutron energies of 1 MeV using the transfer reaction 232Th(3He,p)234Pa∗. Nucl Phys A 775(3–4):175–187

    Article  Google Scholar 

  • Breit G, Wigner EP (1936) Capture of slow neutrons. Phys Rev 49(7):519–581

    Article  MATH  Google Scholar 

  • Burke JT, Bernstein LA, Scielzo ND et al (2008) Surrogate Reactions in the Actinide Region, AIP Conference Proceedings 1005:96–100

    Article  Google Scholar 

  • Calviani M, Cennini P, Karadimos D et al (2008) A fast ionization chamber for fission cross-section measurements at n_TOF. Nucl Instrum Methods Phys Res Sect A 594(2):220–227

    Article  Google Scholar 

  • Calviani M, Praena J, Abbondanno U et al (2009) High-accuracy 233U(n,f) cross-section measurement at the white-neutron source n_TOF from near-thermal to 1 MeV neutron energy. Phys Rev C 80(4):044604

    Article  Google Scholar 

  • Camarda HS, Dietrich FS, Phillips TW (1989) Microscopic optical-model calculations of neutron total cross-sections and cross-section differences. Phys Rev C 39(5):1725–1729

    Article  Google Scholar 

  • Capote R, Soukhovitskii ES, Quesada JM et al (2005) Is a global coupled-channel dispersive optical model potential for actinides feasible? Phys Rev C 72(6):064610

    Article  Google Scholar 

  • Carlson AD, Behrens JW (1983) Measurement of the 235U(n,f) cross section from 0.3 to 3.0 MeV using the NBS electron linac, Proceedings of the International Conference on Nuclear Data for Science and Technology, 6–10 Sept. 1982, Antwerp, Belgium, ed. K. H. Bockhoff, (Dordrecht, Netherlands; Reidel, 1983) pp. 456–459

    Google Scholar 

  • Carlson AD et al (2009) International evaluation of neutron cross section standards. Nucl Data Sheets 110(12):3215–3324

    Article  Google Scholar 

  • Chadwick J (1932) Possible existence of a neutron. Nature 129:312

    Google Scholar 

  • Chadwick MB et al (2006). ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology. ENDF data can be accessed at the National Nuclear Data Center at Brookhaven National Laboratory [www.nndc.bnl.gov]. Nucl Data Sheets 107(12):2931–3059

  • Cierjacks S, Duelli B, Forti P et al (1968) Fast neutron time-of-fight spectrometer used with the karlsruhe isochronous cyclotron. Rev Sci Instrum 39(9):1279–1288

    Article  Google Scholar 

  • Cramer JD, Britt HC (1970) Neutron fission cross sections for Th-231, Th-233, U-235, U-237, U-239, Pu-241, and Pu-243 from 0.5 to 2.25 MeV using (t, pf) reactions. Nucl Sci Eng 41(2):177

    Google Scholar 

  • Dabbs JWT (1979) Neutron cross section measurements at ORELA. In: Nuclear cross sections for technology proceedings of the international conference on nuclear cross sections for technology, Knoxville, p 929

    Google Scholar 

  • Dagan R (2008) On the angular distribution of the ideal gas scattering kernel. Ann Nucl Energy 35:1109–1116

    Article  Google Scholar 

  • Danon Y, Slovacek RE, Block RC et al (1991) Fission cross-section measurements of Cm-247, Es-254, and Cf-250 from 0.1 eV to 80 keV. Nucl Sci Eng 109(4):341–349

    Google Scholar 

  • Danon Y, Block RC, Slovacek RE (1995) Design and construction of a thermal-neutron target for the RPI linac. Nucl Instrum Methods Phys Res Sect A 352(3):596–603

    Article  Google Scholar 

  • Danon Y, Werner CJ, Youk G et al (1998) Neutron total cross-section measurements and resonance parameter analysis of holmium, thulium, and erbium from 0.001 to 20 eV. Nucl Sci Eng 128(1):61–69

    Google Scholar 

  • Danon Y, Block RC, Rapp MJ et al (2009a) Beryllium and graphite high-accuracy total cross-section measurements in the energy range from 24 to 900 keV. Nucl Sci Eng 161(3):321–330

    Google Scholar 

  • Danon Y, Liu E, Barry D et al (2009b) Benchmark experiment of neutron resonance scattering models in Monte Carlo codes. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009).

    Google Scholar 

  • Davis JC (1989) The LLNL multi-user tandem laboratory. Nucl Instrum Methods B 40–41(Part 2):705–708

    Article  Google Scholar 

  • Di Lullo AR, Massey TN, Grimes SM et al (2008) A fission chamber measurement of the B-nat(d,n) cross section for use in neutron detector calibration. Nucl Sci Eng 159(3):346–350

    Google Scholar 

  • Dietrich FS, Anderson JD, Bauer RW et al (2003) Importance of isovector effects in reproducing neutron total cross section differences in the W isotopes. Phys Rev C 67(4):044606

    Article  Google Scholar 

  • Drosg M (2005) Drosg-2000, codes and database for 59 neutron source reactions, Tech. Rep. IAEA report IAEA-NDS-87, Rev. 9 (May 2005). http://www-nds.iaea.org/drosg2000.html.

  • Dudey ND, Heinrich RR, Madson AA (1970) Reaction cross sections of Rb-85(n,gamma)Rb-86m, Rb-87(n,gamma)Rb-88, and Y-89(n,gamma) Y-90m between 0.16 MeV and 1.5 MeV. J Nucl Energy 24(4):181

    Article  Google Scholar 

  • Elsevier, Inc. Engineering village (2009). http://www.engineeringvillage2.org

  • Escher JE, Dietrich FS (2006) Determining (n, f) cross sections for actinide nuclei indirectly: examination of the surrogate ratio method. Phys Rev C 74(5):054601

    Article  Google Scholar 

  • Fadil M, Rannou B (2008) About the production rates and the activation of the uranium carbide target for SPIRAL2. Nucl Instrum Methods B 266 (19–20):4318–4321

    Article  Google Scholar 

  • Farrell JA and Pineo WFE (1968) Neutron cross sections of 6Li in the kilovolt region. In: Proceedings of the conference on neutron cross sections and technology. NBS Special Publication 299(1):153–158

    Google Scholar 

  • Fernbach S, Serber R, Taylor TB (1949) The scattering of high energy neutrons by nuclei. Phys Rev 75(9):1352–1355

    Article  Google Scholar 

  • Feshbach H, Porter CE, Weisskopf VF (1954) Model for nuclear reactions with neutrons. Phys Rev 96(2):448–464

    Article  MATH  Google Scholar 

  • Finlay RW, Brient CE, Carter DE et al (1982) The Ohio-University beam swinger facility. Nucl Instrum Methods Phys Res 198(2–3):197– 206

    Article  Google Scholar 

  • Firk F, Whittaker J, Bowey E et al (1963) A nanosecond neutron time-of-fight system for the Harwell 30 MeV electron linac. Nucl Instrum Methods 23:141–146

    Article  Google Scholar 

  • Flaska M, Borella A, Lathouwers D et al (2004) Modeling of the GELINA neutron target using coupled electron-photon-neutron transport with the MCNP4C3 code. Nucl Instrum Methods phys Sect A 531(3):392–406

    Article  Google Scholar 

  • Foderaro A (1971) The elements of neutron interaction theory. MIT Press, Cambridge

    Google Scholar 

  • Frank IM, Pacher P (1983) 1 st experience on the high-intensity pulsed reactor IBR-2. Physica B 120(1–3):37–44

    Google Scholar 

  • Fröhner F (2000) Evaluation and analysis of nuclear resonance data. Tech. Rep. JEFF Report 18, OECD/NEA

    Google Scholar 

  • Fujita Y (1986) Neutron TOF spectrometer at KURRI electron linac. In: Proceedings of the 1985 seminar on nuclear data (JAERI-M-86–080), Kyoto, p 334–337

    Google Scholar 

  • Futakawa M, Haga K, Wakui T et al (2009) Development of the HP target in the J-PARC neutron source. Nucl Instrum Methods A 600(1): 18–21

    Article  Google Scholar 

  • Ge Zhigang et al (2008) The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities In: Proceedings of the international conference on nuclear data for science and technology ND2007, EDP Sciences, 07570

    Google Scholar 

  • Good WM, Neiler JH, Gibbons JH (1958) Neutron total cross sections in the keV region by fast time-of-fight measurements. Phys Rev 109(3):926–933

    Article  Google Scholar 

  • Grallert A, Csikai J, Qaim SM et al (1993) Recommended target materials for d-d neutron sources. Nucl Instrum Methods Phys Res Sect A 334(1):154–159

    Article  Google Scholar 

  • Guber KH et al (2005) New neutron cross-section measurements at ORELA for improved nuclear data calculations. In: Haight RC, Chadwick MB, Kawano T, Talou P (eds) International conference on nuclear data for science and technology, AIP, vol 769, Santa Fe, p 1706

    Google Scholar 

  • Gunsing F n_TOF Collaboration et al (2009) Measurement of the 232Th(n,γ) resonance reaction at the n_TOF facility at CERN, unpublished

    Google Scholar 

  • Hansen LF, Anderson JD, Brown PS et al (1973) Measurements and calculations of neutron-spectra from iron bombarded with 14-MeV neutrons. Nucl Sci Eng 51(3):278–295

    Google Scholar 

  • Hansen LF, Wong C, Komoto TT et al (1980) Measurements and calculations of the neutron emission-spectra from materials used in fusion-fission reactors. Nucl Technol 51(1):70–77

    Google Scholar 

  • Haq RU, Pandey A, Bohigas O (1982) Fluctuations properties of nuclear energy levels: do theory and experiment agree? Phys Rev Lett 48(6): 1086–1089

    Article  Google Scholar 

  • Hatarik R, Bernstein LA, Burke JT et al (2009) Using (d,p gamma) as a surrogate reaction for (n,gamma) AIP Conference Proceedings (2009) Vol.1090, p. 445–449

    Article  Google Scholar 

  • Hauser W, Feshbach H (1952) The inelastic scattering of neutrons. Phys Rev 87(2):366–373

    Article  MATH  Google Scholar 

  • Herman M, Capote R, Carlson BV et al (2007) EMPIRE: Nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715

    Article  Google Scholar 

  • Hockenbury RW, Bartolome ZM, Tatarczuk JR et al (1969) Neutron radiative capture in Na, Al, Fe, and Ni from 1 to 200 kEV. Phys Rev 178(4): 1746–1769

    Article  Google Scholar 

  • Hodgson PE (1971) Nuclear reactions and nuclear structure. Clarendon Press, Oxford

    Google Scholar 

  • Hogue HH, Vonbehren PL, Glasgow DW et al (1979) Elastic and inelastic-scattering of 7-MeV to 14-MeV neutrons from Li-6 and Li-7. Nucl Sci Eng 69(1):22–29

    Google Scholar 

  • Hori J et al (2008) Neutron capture cross section measurement on 243Am with a 4Ï€ Ge spectrometer. In: Proceedings of the 2008 symposium on nuclear data, Tokai, pp. 20–21

    Google Scholar 

  • Humblet J, Rosenfeld L (1961) Theory of nuclear reactions: I. resonant states and collision matrix. Nucl Phys 26(4):529–578

    Article  MATH  Google Scholar 

  • Hwang RN (1973) Efficient methods for treatment of resonance cross-sections. Nucl Sci Eng 52(2):157–175

    Google Scholar 

  • Ibaraki M, Baba M, Miura T et al (2000) Experimental method for neutron elastic scattering cross-section measurement in 40–90 MeV region at TIARA. Nucl Instrum Methods Phys Res Sect A 446(3):536–544

    Article  Google Scholar 

  • Igashira M, Kitazawa H, Yamamuro N (1986) A heavy shield for the gamma-ray detector used in fast-neutron experiments. Nucl Instrum Methods Phys Res Sect A 245(2–3): 432–437

    Article  Google Scholar 

  • Ignatyuk AV, Fursov BI (2008) The latest BROND-3 developments. In: Proceedings of the international conference on nuclear data for science and technology ND2007, EDP Sciences, 07641

    Google Scholar 

  • Jaag S, Kappeler F (1995) Stellar (n,gamma) cross-section of the unstable isotope Eu-155. Phys Rev C 51(6):3465–3471

    Article  Google Scholar 

  • Jandel M et al (2008) Neutron capture cross section of Am-241. Phys Rev C 78(3):034 609

    Article  Google Scholar 

  • Joly S, Voignier J, Grenier G et al (1978) Measurement of fast-neutron capture cross-sections using a Nal spectrometer. Nucl Instrum Methods 153(2–3):493–501

    Article  Google Scholar 

  • Jongen Y, Ryckewaert G (1976) Heavy-ion acceleration at CYCLONE (Belgium). IEEE Trans Nucl Sci 23(2):987–990

    Article  Google Scholar 

  • Kapur PL, Peierls RE (1938) Dispersion formula for nuclear reactions. Proc R Soc A166:277–295

    Google Scholar 

  • Kegel GHR (1989) Fast-neutron generation with a type Cn Van De graaff accelerator. Nucl Instrum Methods Phys Res Sect B 40–1:1165–1168

    Article  Google Scholar 

  • Kim GN et al (2002) Measurement of photoneutron spectrum at Pohang neutron facility. Nucl Instrum Methods Phys Res Sect A 485(3): 458–467

    Article  Google Scholar 

  • Klug J et al (2002) SCANDAL – a facility for elastic neutron scattering studies in the 50–130 MeV range. Nucl Instrum Methods Phys Res Sect A 489(1–3):282–303

    Article  Google Scholar 

  • Klug J, Altstadt E, Beckert C et al (2007) Development of a neutron time-of-fight source at the ELBE accelerator. Nucl Instrum Methods Phys Res Sect A 577(3):641–653

    Article  Google Scholar 

  • Knoll G (2000) Radiation detection & measurement. John Wiley & Sons, New York

    Google Scholar 

  • Kobayashi K, Lee S, Yamamoto S et al (2002) Measurement of neutron capture cross section of Np-237 by linac time-of-fight method and with linac-driven lead slowing-down spectrometer. J Nucl Sci Technol 39(2):111–119

    Article  Google Scholar 

  • Kobayashi K, Lee S, Yamamoto S (2004) Neutron capture cross-section measurement of Tc-99 by linac time-of-fight method and the resonance analysis. Nucl Sci Eng 146(2):209–220

    Google Scholar 

  • Koehler PE (2001) Comparison of white neutron sources for nuclear astrophysics experiments using very small samples. Nucl Instrum Methods A 460:352–361

    Article  Google Scholar 

  • Kohler R, Mewissen L, Poortmans F et al (1985) High-resolution neutron resonance spectroscopy. AIP Conf Proc 124:306–307

    Article  Google Scholar 

  • Kondo K, Murata I, Ochiai K et al (2006) Charged-particle spectrometry using a pencil-beam DT neutron source for double-differential cross-section measurement. Nucl Instrum Methods Phys Res Sect A 568(2):723–733

    Article  Google Scholar 

  • Koning A et al (2006) The JEFF-31 nuclear data library, JEFF report 21. Tech. rep., JEFF data can be accessed at the OECD Nuclear Energy Agency

    Google Scholar 

  • Koning AJ, Hilaire S, Duijvestijn M (2007) TALYS a nuclear reaction program. Tech. rep.

    Google Scholar 

  • Kononov VN et al (1982) Fast-neutron radiative-capture cross-sections and d-wave strength functions. Proceedings of the 4th international symposium on capture gamma-ray spectroscopy and related topics, London, pp 518–519

    Google Scholar 

  • Kononov VN, Poletaev ED, Timokhov VM et al (1987) Fast-neutron radiative-capture cross-sections and transmissions for tungsten isotopes. Sov J Nucl Phys 46(1):33–34

    Google Scholar 

  • Kopecky S, Brusegan A (2006) The total neutron cross section of Ni-61. Nucl Phys A 773(3–4): 173–186

    Article  Google Scholar 

  • Kornilov NV, Kagalenko AB (1995) Inelastic neutron-scattering by U-235 and U-238 nuclei. Nucl Sci Eng 120(1):55–64

    Google Scholar 

  • Krane K (1987) Introductory nuclear physics. John Wiley & Sons, New York

    Google Scholar 

  • Lamb WE (1939) Capture of neutrons by atoms in a crystal. Phys Rev 55(2):190–197

    Article  MATH  Google Scholar 

  • Lane AM, Thomas RG (1958) R-matrix theory of nuclear reactions. Rev Mod Phys 30(2): 257–353

    Article  MathSciNet  Google Scholar 

  • Larson NM (2006) Updated users’ guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes’ equations. SAMMY, computer code Report ORNL/TM-9179/R7, Oak Ridge National Laboratory

    Google Scholar 

  • Leeb H, Wilmsen S (2000) Violation of pseudospin symmetry in nucleon-nucleus scattering: Exact relations. Phys Rev C 62(2):024602

    Article  Google Scholar 

  • Leinweber G, Barry DP, Trbovich MJ et al (2006) Neutron capture and total cross-section measurements and resonance parameters of gadolinium. Nucl Sci Eng 154(3):261–279

    Google Scholar 

  • Lesher SR, McKay CJ, Mynk M et al (2007) Low-spin structure of Mo96 studied with the (n; n′ γ) reaction. Phys Rev C 75(3):034318

    Article  Google Scholar 

  • Lisowski PW, Schoenberg KF (2006) The Los Alamos neutron science center. Nucl Instrum Methods Phys Res sect A 562(2):910–914

    Article  Google Scholar 

  • Luk’yanov AA, Yaneva NB (1997) Multilevel parametrization of resonance neutron cross sections. Phys Part Nucl 28:331–347

    Article  Google Scholar 

  • Lychagin AA, Simakov SP, Devkin BV et al (1987) Study of the Fe(n, n′ gamma) reaction with 14.1-MeV neutrons. Sov J Nucl Phys 45(5): 761–766

    Google Scholar 

  • Lyles BF, Bernstein LA, Burke JT et al (2007) Absolute and relative surrogate measurements of the U-236(n,f) cross section as probe of angular momentum effects. Phys Rev C 76(1):014606

    Article  Google Scholar 

  • Lynn JE (1968) The theory of neutron resonance reactions, Clarendon Press, Oxford

    Google Scholar 

  • Mannhart W, Schmidt D (2002) Measurement of the 28Si(n,p), 29Si(n,p) and 30Si(n,alpha) cross sections between 6.9 and 14.0 MeV. J Nucl Sci Technol 1:218–221

    Google Scholar 

  • Mannhart W, Schmidt D (2005) Measurement of neutron reaction sections between 8 and 14 MeV. AIP 769:609–612

    Google Scholar 

  • Marrone S et al (2004) A low background neutron flux monitor for the n_TOF facility at CERN. Nucl Instrum Methods Phys Res Sect A 517 (1–3):389

    Article  Google Scholar 

  • Massey TN, A1-Quraishi S, Brient CE et al (1998) A measurement of the A1-27 (d,n) spectrum for use in neutron detector calibration. Nucl Sci Eng 129(2):175–179

    Google Scholar 

  • Mehta ML (1960) On the statistical properties of the level-spacings in nuclear spectra. Nucl Phys 18:395

    Article  MATH  Google Scholar 

  • Mehta ML (1991) Random matrices. Academic, Boston

    MATH  Google Scholar 

  • Meister A (1994) Calculations on lattice vibration effects in the doppler broadening of the 0.18 eV Cd neutron resonance cross section. Tech. Rep. CE/R/VG/78/94, JRC-IRMM

    Google Scholar 

  • Mellema S, Finlay RW, Dietrich FS et al (1983) Microscopic and conventional optical-model analysis of fast-neutron scattering from Fe-54,Fe-56. Phys Rev C 28(6):2267– 2277

    Article  Google Scholar 

  • Mihailescu LC, Borcea C, Koning AJ et al (2008) High resolution measurement of neutron inelastic scattering and (n,2n) cross-sections for Bi-209. Nucl Phys A 799:1–29

    Article  Google Scholar 

  • Mocko M, Muhrer G, Tovesson F (2008) Advantages and limitations of nuclear physics experiments at an ISIS-class spallation neutron source. Nucl Instrum Methods Phys Res Sect A 589(3): 455–464

    Article  Google Scholar 

  • Moldauer PA (1975b) Why Hauser-Feshbach formula works. Phys Rev C 11(2):426–436

    Article  Google Scholar 

  • Moldauer PA (1975a) Direct reaction effects on compound cross-sections. Phys Rev C 12(3): 744–756

    Article  Google Scholar 

  • Moldauer PA (1976) Evaluation of fluctuation enhancement factor. Phys Rev C 14(2): 764–766

    Article  Google Scholar 

  • Moldauer PA (1980) Statistics and the average cross-section. Nucl Phys A 344(2):185–195

    Article  Google Scholar 

  • Molnar G (2004) Handbook of prompt gamma activation analysis. Springer, Berlin

    Google Scholar 

  • Moxon MC, Brisland JB (1991) REFIT, a least squares fitting program for resonance analysis of neutron transmission and capture data computer code. Tech. rep., United Kingdom Atomic Energy Authority

    Google Scholar 

  • Mughabghab SF (2006) Atlas of neutron resonances. Elsevier Science, Amsterdam

    Google Scholar 

  • Naberejnev DG, Mounier C, Sanchez R (1999) The influence of crystalline binding on resonant absorption and reaction rates. Nucl Sci Eng 131:220

    Google Scholar 

  • Nguyen VD et al (2006) Measurements of neutron and photon distributions by using an activation technique at the Pohang neutron facility. J Korean Phys Soc 48(3):382–389

    Google Scholar 

  • Nuclear data standards for nuclear measurements (1991) NEANDC/INDC standards file. Tech. Rep. NEANDC-311. http://www nds.iaea.org/standards/

    Google Scholar 

  • Nystrom G, Bergqvis I, Lundberg B (1971) Neutron-capture cross-sections in F, Mg, Al, Si, P and S from 20 to 80 keV. Phys Scr 4(3):95

    Article  Google Scholar 

  • Orphan V, Hoot C, Carlson A et al (1969) A facility for measuring cross sections of (n,xgamma) reactions using an electron linac. Nucl Instrum Methods 73(1):1–12

    Article  Google Scholar 

  • Overberg ME, Moretti BE, Slovacek RE et al (1999) Photoneutron target development for the RPI linear accelerator. Nucl Instrum Methods Phys Res Sect A 438(2–3):253–264

    Article  Google Scholar 

  • Pancin J et al (2004) Measurement of the n_TOF beam profile with a micromegas detector. Nucl Instrum Methods Phys Res Sect A 524(1–3):102

    Article  Google Scholar 

  • Panebianco S, Berg K, David JC et al (2009) Neutronic characterization of the MEGAPIE target. Ann Nucl Energy 36(3):350–354

    Article  Google Scholar 

  • Paradela C et al (2009) Neutron induced fission cross section of 234U and 237Np measured at the n_TOF facility. unpublished

    Google Scholar 

  • Payne GL, Schlessinger L (1970) Properties of the K-matrix in nuclear-reaction theory. Phys Rev C 2(5):1648–1653

    Article  Google Scholar 

  • Petit M et al (2004) Determination of the 233Pa reaction cross section from 0.5 to 10 MeV neutron energy using the transfer reaction 232Th(3He, p)234Pa. Nucl Phys A 735:345–371

    Article  Google Scholar 

  • Petrich D, Neil M, Kappeler F et al (2008) A neutron production target for FRANZ. Nucl Instrum Methods A 596(3):269–275

    Article  Google Scholar 

  • Pillon M, Angelone M, Martone M, Rado V (1995) Characterization of the source neutrons produced by the Frascati neutron generator. Fus Eng Des 28:683–688

    Google Scholar 

  • Plag R et al (2003) An optimized C6D6 detector for studies of resonance-dominated (n,γ) cross-sections. Nucl Instrum Methods Phys Res Sect A 496:425

    Article  Google Scholar 

  • Plettner C, Ai H, Beausang CW et al (2005) Estimation of (n,f) cross sections by measuring reaction probability ratios. Phys Rev C 71(5):051602

    Article  Google Scholar 

  • Porter CE, Thomas RG (1956) Fluctuations of nuclear reaction widths. Phys Rev 104(2):483–491

    Article  Google Scholar 

  • Qaim SM, Wolfle R, Rahman MM et al (1984) Measurement of (n,p) and (n,alpha) reaction cross-sections on some isotopes of nickel in the energy region of 5 to 10 MeV using a deuterium gas-target at a compact cyclotron. Nucl Sci Eng 88(2):143–153

    Google Scholar 

  • Quesada JM, Capote R, Soukhovitskii ES et al (2007) Approximate Lane consistency of the dispersive coupled-channels potential for actinides. Phys Rev C 76(5):057602

    Article  Google Scholar 

  • Rapp M, Danon Y, Block RC et al (2009) High energy neutron time of fight measurements of carbon and beryllium samples at the RPI linac. In: Society AN (ed) International conference on mathematics, computational methods & reactor physics 2009, Saratoga Springs

    Google Scholar 

  • Ray ER, Good WM (1972) Experimental neutron resonance spectroscopy, Academic, New York, chap. Pulsed Accelerator Time-of-Flight Spectrometers

    Google Scholar 

  • Reich CW, Moore MS (1958) Multilevel formula for the fission process. Phys Rev 111(3):929–933

    Article  Google Scholar 

  • Reimer P, Koning AJ, Plompen AJM et al (2009) Neutron induced reaction cross sections for the radioactive target nucleus Tc-99. Nucl Phys A 815:1–17

    Article  Google Scholar 

  • Reuss P (2008) Neutron physics. EDP Sciences, Oakland

    Google Scholar 

  • Rochman D, Haight RC, O’Donnell JM et al (2004) Neutron-induced reaction studies at FIGARO using a spallation source. Nucl Instrum Methods Phys Res Sect A 523(1–2):102–115

    Article  Google Scholar 

  • Rochman D et al (2005) Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator. Nucl Instrum Methods Phys Res Sect A 550(1–2):397–413

    Article  Google Scholar 

  • Romano C, Danon Y, Block R et al (2008) Measurements of fission fragment properties using RPI’s lead slowing-down spectrometer. In: Bersillon, O, Gunsing, F, Bauge, E, Jacqmin, R, Leray, S (eds), Proceedings of the international conference on nuclear data for science and technology, Nice, France, EDP Sciences Vol. 1, pp. 371–374

    Google Scholar 

  • Rubbia C et al (1998) A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV. Tech. Rep. CERN/LHC/98–02, CERN

    Google Scholar 

  • Sage C, Semkova V, Bouland O et al (2009) High resolution measurements of the 241 Am(n,2n) reaction cross section. unpublished

    Google Scholar 

  • Saglime FJ III, Danon Y, Block R (2006) Digital data acquisition system for time of fight neutron beam measurements. In: The American Nuclear Society’s 14th Biennial Topical Meeting of the Radiation Protection and Shielding Division, Carlsbad, p 368

    Google Scholar 

  • Saglime F, Danon Y, Block R et al (2009) High energy neutron scattering benchmark of Monte Carlo computations. In: International conference on mathematics, computational methods & reactor physics (M&C 2009), Saratoga Springs

    Google Scholar 

  • Schmidt D (2008) Determination of neutron scattering cross sections with high precision at PTB in the energy region 8 to 14 MeV. Nucl Sci Eng 160:349–362

    Google Scholar 

  • Schmidt D, Zhou ZY, Ruan XC et al (2005) Application of non-monoenergetic sources in fast neutron scattering measurements. Nucl Instrum Methods Phys Res Sect A 545(3):658–682

    Article  Google Scholar 

  • Schmittroth F, Tobocman W (1971) Comparison of the R-matrix nuclear reaction theories. Phys Rev C 3:1010–1019

    Article  Google Scholar 

  • Schut PAC, Kockelmann W, Postma H et al (2008) Neutron resonance capture and neutron diffraction analysis of roman bronze water taps. J Radioanal Nucl Chem 278(1):151–164

    Article  Google Scholar 

  • Semkova V, Plompen AJM (2007) Neutron-induced dosimetry reaction cross-section measurements from the threshold up to 20 MeV. Radiat Prot Dosimetry 126(1–4):126–129

    Article  Google Scholar 

  • Shcherbakov O, Furutaka K, Nakamura S et al (2005) Measurement of neutron capture cross section of Np-237 from 0.02 to 100 eV. J Nucl Sci Technol 42(2):135–144

    Google Scholar 

  • Shibata K et al (2002) Japanese evaluated nuclear data library version 3 revision-3: JENDL-3.3. J Nucl Sci Technol 39(11):1125–1136

    Article  Google Scholar 

  • Shyam R, Scholten O (2008) Photoproduction of eta mesons within a coupled-channels K-matrix approach. Phys Rev C 78(6):065201

    Article  Google Scholar 

  • Sirakov I, Capote R, Gunsing F et al (2008) An ENDF-6 compatible evaluation for neutron induced reactions of Th-232 in the unresolved resonance region. Ann Nucl Energy 35(7):1223–1231

    Article  Google Scholar 

  • Staples P, Egan JJ, Kegel GHR et al (1995) Prompt fission neutron energy-spectra induced by fast-neutrons. Nucl Phys A 591(1):41–60

    Article  Google Scholar 

  • Sukhoruchkin SI, Soroko ZN, Deriglazov VV (1998) Low energy neutron physics, tables of neutron resonance parameters, vol I/16B. Springer, Landolt-Börnstein, Berlin

    Google Scholar 

  • Tagliente G et al (2008) Experimental study of the Zr-91(n, gamma) reaction up to 26 keV. Phys Rev C 78(4):045804

    Article  Google Scholar 

  • Takahashi A, Ichimura E, Sasaki Y et al (1988) Measurement of double differential neutron emission cross-sections for incident neutrons of 14-MeV. J Nucl Sci Technol 25(3):215–232

    Google Scholar 

  • Tovesson F, Hill TS (2007) Neutron induced fission cross section of Np-237 from 100 keV to 200 MeV. Phys Rev C 75(3):034610

    Article  Google Scholar 

  • Tovesson F, Hill TS (2008) Subthreshold fission cross section of 237Np. Nucl Sci Eng 159:94

    Google Scholar 

  • Tovesson F, Hill TS, Mocko M et al (2009) Neutron induced fission of Pu-240,Pu-242 from 1 eV to 200 MeV. Phys Rev C 79(1):014613

    Article  Google Scholar 

  • Trbovich MJ, Barry DP, Slovacek RE et al (2009) Hafnium resonance parameter analysis using neutron capture and transmission experiments. Nucl Sci Eng 161(3):303–320

    Google Scholar 

  • Tronc D, Salome JM, Bockhoff KH (1985) A new pulse-compression system for intense relativistic electron-beams. Nucl Instrum Methods Phys Res Sect A 228(2–3):217–227

    Article  Google Scholar 

  • Verbaarschot JJM (1986) Investigation of the formula for the average of two S-matrix elements in compound nucleus reactions. Ann Phys 168(2): 368–386

    Article  MathSciNet  Google Scholar 

  • Verbaarschot JJM, Weidenmuller HA, Zirnbauer MR (1985) Grassmann integration in stochastic quantum physics – the case of compound nucleus scattering. Phys Rep Rev Sect Phys Lett 129(6):367–438

    MathSciNet  Google Scholar 

  • Vogt E (1962) Theory of low energy nuclear reactions. Rev Mod Phys 34(4):723–747

    Article  Google Scholar 

  • Wagemans C, De Smet L, Vermote S et al (2008) Measurement of the U-236(n, f) cross section in the neutron energy range from 0.5 eV up to 25 keV. Nucl Sci Eng 160(2):200–206

    Google Scholar 

  • Wallerstein G et al (1997) Synthesis of the elements in stars: forty years of progress. Rev Mod Phys 69:995

    Article  Google Scholar 

  • Wang T et al (2008) Measurement of the total neutron cross-section and resonance parameters of molybdenum using pulsed neutrons generated by an electron linac. Nucl Instrum Methods Phys Res Sect B 266(4):561–569

    Article  Google Scholar 

  • Weisskopf VF, Ewing DH (1940) On the yield of nuclear reactions with heavy elements. Phys Rev 57(6):472–485; erratum 57(10):935

    Google Scholar 

  • Wigner EP, Eisenbud L (1947) Higher angular momenta and long range interaction in resonance reactions. Phys Rev 72(1):29–41

    Article  Google Scholar 

  • Wisshak K, Guber K, Kappeler F et al (1990) The Karlsruhe 4-pi barium fluoride detector. Nucl Instrum Methods Phys Res Sect A 292(3):595–618

    Article  Google Scholar 

  • Wisshak K, Kappeler F (1978) Neutron-capture cross-section ratios of Pu-240, Pu-242, U-238, and Au-197 in energy-range from 10 to 90 keV. Nucl Sci Eng 66(3):363–377

    Google Scholar 

  • Wisshak K, Kappeler F (1979) Neutron-capture cross-section ratios of Pu-240 and Pu-242 versus Au-197 in the energy-range from 50 to 250 keV. Nucl Sci Eng 69(1): 39–46

    Google Scholar 

  • Wisshak K, Voss F, Arlandini C et al (2004) Stellar neutron capture on Ta-180m. I. cross section measurement between 10 keV and 100 keV. Phys Rev C 69(5):055801

    Article  Google Scholar 

  • Woods R, Mckibben JL, Henkel RL (1974) Los-Alamos 3-stage Van de Graaff facility. Nucl Instrum Methods 122(1–2):81–97

    Article  Google Scholar 

  • Younes W, Britt HC (2003) Neutron-induced fission cross sections simulated from (t,pf) results. Phys Rev C 67(2):024610

    Article  Google Scholar 

  • Zerkin VV, McLane V, Herman MW et al (2005) EXFOR-CINDA-ENDF: migration of databases to give higher-quality nuclear data services. AIP Conf Proc 769(1): 586

    Article  Google Scholar 

  • Zhuravlev BV, Demenkov VG, Lychagin AA et al (2007) A measuring complex for time-of-fight spectrometry of fast neutrons. Instrum Exp Tech 50(6):730–736

    Article  Google Scholar 

  • Zwillinger D (2003) CRC standard mathematical tables and formulae. CRC Press, Boca Raton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this entry

Cite this entry

Block, R.C., Danon, Y., Gunsing, F., Haight, R.C. (2010). Neutron Cross Section Measurements. In: Cacuci, D.G. (eds) Handbook of Nuclear Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98149-9_1

Download citation

Publish with us

Policies and ethics