Skip to main content

Abstract

The aim of this chapter is to review recent developments in the mathematical and numerical modeling of anomaly detection and multi-physics biomedical imaging. Expansion methods are designed for anomaly detection. They provide robust and accurate reconstruction of the location and of some geometric features of the anomalies, even with moderately noisy data. Asymptotic analysis of the measured data in terms of the size of the unknown anomalies plays a key role in characterizing all the information about the anomaly that can be stably reconstructed from the measured data. In multi-physics imaging approaches, different physical types of waves are combined into one tomographic process to alleviate deficiencies of each separate type of waves, while combining their strengths. Muti-physics systems are capable of high-resolution and high-contrast imaging. Asymptotic analysis plays a key role in multi-physics modalities as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agranovsky M, Kuchment P (2007) Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Prob 23:20892102

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovsky M, Kuchment P, Kunyansky L (2009) On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography. In: Wang LH (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton, pp 89–101

    Chapter  Google Scholar 

  3. Ambartsoumian G, Patch S (2005) Thermoacoustic tomography–Implementation of exact backprojection formulas, math.NA/0510638

    Google Scholar 

  4. Ammari H (2002) An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume. SIAM J Contr Optim 41:1194–1211

    Article  MathSciNet  MATH  Google Scholar 

  5. Ammari H (2008) An introduction to mathematics of emerging biomedical imaging. Mathématiques and applications, vol 62. Springer, Berlin

    MATH  Google Scholar 

  6. Ammari H, Asch M, Guadarrama Bustos L, Jugnon V, Kang H Transient wave imaging with limited-view data, submitted

    Google Scholar 

  7. Ammari H, Bonnetier E, Capdeboscq Y, Tanter M, Fink M (2008) Electrical impedance tomography by elastic deformation. SIAM J Appl Math 68:1557–1573

    Article  MathSciNet  MATH  Google Scholar 

  8. Ammari H, Bossy E, Jugnon V, and Kang H Mathematical modelling in photo-acoustic imaging of small absorbers, SIAM Rev., to appear

    Google Scholar 

  9. Ammari H, Bossy E, Jugnon V, and Kang H Quantitative photoacoustic imaging of small absorbers. submitted

    Google Scholar 

  10. Ammari H, Capdeboscq Y, Kang H, Kozhemyak A (2009) Mathematical models and reconstruction methods in magneto-acoustic imaging. Euro J Appl Math 20:303–317

    Article  MathSciNet  MATH  Google Scholar 

  11. Ammari H, Garapon P, Guadarrama Bustos L, Kang H Transient anomaly imaging by the acoustic radiation force. J Diff Equat, to appear

    Google Scholar 

  12. Ammari H, Garapon P, Jouve F (2010) Separation of scales in elasticity imaging: a numerical study, J Comput Math 28:354–370.

    MathSciNet  MATH  Google Scholar 

  13. Ammari H, Garapon P, Kang H, Lee H (2008) A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quart Appl Math 66: 139–175

    MathSciNet  MATH  Google Scholar 

  14. Ammari H, Garapon P, Kang H, Lee H Effective viscosity properties of dilute suspensions of arbitrarily shaped particles. submitted

    Google Scholar 

  15. Ammari H, Griesmaier R, Hanke M (2007) Identification of small inhomogeneities: asymptotic factorization. Math Comp 76:1425–1448

    Article  MathSciNet  MATH  Google Scholar 

  16. Ammari H, Iakovleva E, Kang H, Kim K (2005) Direct algorithms for thermal imaging of small inclusions. SIAM Multiscale Model Simul 4: 1116–1136

    Article  MathSciNet  MATH  Google Scholar 

  17. Ammari H, Iakovleva E, Lesselier D (2005) Two numerical methods for recovering small electromagnetic inclusions from scattering amplitude at a fixed frequency. SIAM J Sci Comput 27:130–158

    Article  MathSciNet  MATH  Google Scholar 

  18. Ammari H, Iakovleva E, Lesselier D (2005) A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency. SIAM Multiscale Model Simul 3:597–628

    Article  MathSciNet  MATH  Google Scholar 

  19. Ammari H, Iakovleva E, Lesselier D, Perrusson G (2007) A MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J Sci Comput 29:674–709

    Article  MathSciNet  MATH  Google Scholar 

  20. Ammari H, Kang H (2003) High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J Math Anal 34:1152–1166

    Article  MathSciNet  MATH  Google Scholar 

  21. Ammari H, Kang H (2004) Reconstruction of small inhomogeneities from boundary measurements. Lecture Notes in Mathematics, vol 1846. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Ammari H, Kang H (2004) Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J Math Anal Appl 296:190–208

    Article  MathSciNet  MATH  Google Scholar 

  23. Ammari H, Kang H (2006) Reconstruction of elastic inclusions of small volume via dynamic measurements. Appl Math Opt 54:223–235

    Article  MathSciNet  MATH  Google Scholar 

  24. Ammari H, Kang H (2007) Polarization and moment tensors: with applications to inverse problems and effective medium theory. Applied mathematical sciences, vol 162. Springer, New York

    MATH  Google Scholar 

  25. Ammari H, Kang H, Lee H (2007) A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids. J Comp Math 25:2–12

    MathSciNet  Google Scholar 

  26. Ammari H, Kang H, Nakamura G, Tanuma K (2002) Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion. J Elasticity 67:97–129

    Article  MathSciNet  MATH  Google Scholar 

  27. Ammari H, Khelifi A (2003) Electromagnetic scattering by small dielectric inhomogeneities. J Math Pures Appl 82:749–842

    MathSciNet  MATH  Google Scholar 

  28. Ammari H, Kozhemyak A, Volkov D (2009) Asymptotic formulas for thermography based recovery of anomalies. Numer Math TMA 2: 18–42

    MathSciNet  MATH  Google Scholar 

  29. Ammari H, Kwon O, Seo JK, Woo EJ (2004) Anomaly detection in Tscan trans-admittance imaging system. SIAM J Appl Math 65:252–266

    Article  MathSciNet  MATH  Google Scholar 

  30. Ammari H, Seo JK (2003) An accurate formula for the reconstruction of conductivity inhomogeneities. Adv Appl Math 30:679–705

    Article  MathSciNet  MATH  Google Scholar 

  31. Amalu WC, Hobbins WB, Elliot RL (2006) Infrared imaging of the breast – an overview. In: Bronzino JD (ed) Medical devices and systems, the biomedical engineering handbook, 3rd edn., chap 25. CRC Press, Baton Rouge

    Google Scholar 

  32. Assenheimer M, Laver-Moskovitz O, Malonek D, Manor D, Nahliel U, Nitzan R, Saad A (2001) The T-scan technology: electrical impedance as a diagnostic tool for breast cancer detection. Physiol Meas 22:1–8

    Article  Google Scholar 

  33. Bardos C (2003) A mathematical and deterministic analysis of the time-reversal mirror in Inside out: inverse problems and applications. Mathematical Science Research Institute Publication, vol 47. Cambridge University of Press, Cambridge, pp 381–400

    Google Scholar 

  34. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Contr Optim 30:10241065

    Article  MathSciNet  Google Scholar 

  35. Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrasonics Ferro Freq Contr 51:396–409

    Article  Google Scholar 

  36. Bercoff J, Tanter M, Fink M (2004) The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans Ultrasonics Ferro Freq Contr 51: 1523–1536

    Article  Google Scholar 

  37. Borcea L, Papanicolaou GC, Tsogka C, Berrymann JG (2002) Imaging and time reversal in random media. Inverse Problems 18:1247–1279

    Article  MathSciNet  MATH  Google Scholar 

  38. Brühl M, Hanke M, Vogelius MS (2003) A direct impedance tomography algorithm for locating small inhomogeneities. Numer Math 93: 635–654

    Article  MathSciNet  MATH  Google Scholar 

  39. Capdeboscq Y, De Gournay F, Fehrenbach J, Kavian O (2009) An optimal control approach to imaging by modification. SIAM J Imaging Sci 2:1003–1030

    Article  MathSciNet  MATH  Google Scholar 

  40. Capdeboscq Y, Kang H (2006) Improved bounds on the polarization tensor for thick domains. In: Inverse problems, multi-scale analysis and effective medium theory. Contemporary Mathe-matics, vol 408. American Mathematical Society, RI, pp 69–74

    Google Scholar 

  41. Capdeboscq Y, Kang H (2008) Improved Hashin-Shtrikman bounds for elastic moment tensors and an application. Appl Math Opt 57: 263–288

    Article  MathSciNet  MATH  Google Scholar 

  42. Capdeboscq Y, Vogelius MS (2003) A general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math Model Num Anal 37:159–173

    Article  MathSciNet  MATH  Google Scholar 

  43. Capdeboscq Y, Vogelius MS (2003) Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. Math Model Num Anal 37: 227–240

    Article  MathSciNet  MATH  Google Scholar 

  44. Cedio-Fengya DJ, Moskow S, Vogelius MS (1998) Identification of conductivity imperfections of small diameter by boundary measurements: continuous dependence and computational reconstruction. Inverse Prob 14:553–595

    Article  MathSciNet  MATH  Google Scholar 

  45. Chambers DH, Berryman JG (2004) Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field. IEEE Trans Antennas Propag 52:1729–1738

    Article  Google Scholar 

  46. Chambers DH, Berryman JG (2004) Time-reversal analysis for scatterer characterization. Phys Rev Lett 92:023902–1

    Article  Google Scholar 

  47. Devaney AJ (2005) Time reversal imaging of obscured targets from multistatic data. IEEE Trans Antennas Propagat 523:1600–1610

    Article  Google Scholar 

  48. Fink M (2006) Time-reversal acoustics. Contemp Math 408:151–179

    Article  MathSciNet  Google Scholar 

  49. Fisher AR, Schissler AJ, Schotland JC (2007) Photoacoustic effect of multiply scattered light. Phys Rev E 76:036604

    Article  Google Scholar 

  50. Fouque JP, Garnier J, Papanicolaou G. Solna K (2007) Wave propagation and time reversal in randomly layered media. Springer, New York

    MATH  Google Scholar 

  51. Friedman A, Vogelius MS (1989) Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch Rat Mech Anal 105:299–326

    Article  MathSciNet  MATH  Google Scholar 

  52. Gebauer B, Scherzer O (2008) Impedance-acoustic tomography. SIAM J Appl Math 69:565–576

    Article  MathSciNet  MATH  Google Scholar 

  53. Greenleaf JF, Fatemi M, Insana M (2003) Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 5: 57–78

    Article  Google Scholar 

  54. Haider S, Hrbek A, Xu Y (2008) Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance. Physiol Meas 29:41–50

    Article  Google Scholar 

  55. Haltmeier M, Schuster T, Scherzer O (2005) Filtered backprojection for thermoacoustic computed tomography in spherical geometry. Math Meth Appl Sci 28:1919-1937

    Article  MathSciNet  MATH  Google Scholar 

  56. Haltmeier M, Scherzer O, Burgholzer P, Nuster R, Paltauf G (2007) Thermoacoustic tomography and the circular Radon transform: exact inversion formula. Math Model Meth Appl Sci 17(4):635–655

    Article  MathSciNet  MATH  Google Scholar 

  57. Hanke M (2008) On real-time algorithms for the location search of discontinuous conductivities with one measurement. Inverse Prob 24: 045005.

    Article  MathSciNet  Google Scholar 

  58. Harrach B, Seo JK (2009) Detecting inclusions in electrical impedance tomography without reference measurements. SIAM J Appl Math 69: 1662–1681

    Article  MathSciNet  MATH  Google Scholar 

  59. Isakov V (1998) Inverse problems for partial differential equations, applied mathematical sciences, vol 127. Springer, New York

    Google Scholar 

  60. Kang H, Kim E, Kim K (2003) Anisotropic polarization tensors and determination of an anisotropic inclusion. SIAM J Appl Math 65:1276–1291

    MathSciNet  Google Scholar 

  61. Kang H, Seo JK (1996) Layer potential technique for the inverse conductivity problem. Inverse Prob 12:267–278

    Article  MathSciNet  MATH  Google Scholar 

  62. Kang H, Seo JK (1999) Identification of domains with near-extreme conductivity: global stability and error estimates. Inverse Prob 15: 851–867

    Article  MathSciNet  MATH  Google Scholar 

  63. Kang H, Seo JK (1999) Inverse conductivity problem with one measurement: uniqueness of balls in R3. SIAM J Appl Math 59:1533–1539

    Article  MathSciNet  MATH  Google Scholar 

  64. Kang H, Seo JK (2000) Recent progress in the inverse conductivity problem with single measurement. Inverse problems and related fields. CRC Press, Boca Raton, pp 69–80

    Google Scholar 

  65. Kim S, Kwon O, Seo JK, Yoon JR (2002) On a nonlinear partial differential equation arising in magnetic resonance electrical impedance imaging. SIAM J Math Anal 34:511–526

    Article  MathSciNet  MATH  Google Scholar 

  66. Kim YJ, Kwon O, Seo JK, Woo EJ (2003) Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. Inverse Prob 19: 1213–1225

    Article  MathSciNet  MATH  Google Scholar 

  67. Kim S, Lee J, Seo JK, Woo EJ, Zribi H (2008) Multifrequency transadmittance scanner: mathematical framework and feasibility. SIAM J Appl Math 69:22–36

    Article  MathSciNet  MATH  Google Scholar 

  68. Kohn R, Vogelius M (1984) Identification of an unknown conductivity by means of measurements at the boundary. In: McLaughlin D (ed) Inverse problems. SIAM-AMS Proc. No. 14, American Mathmetical Society, Providence, pp 113–123

    Google Scholar 

  69. Kolehmainen V, Lassas M, Ola P (2005) The inverse conductivity problem with an imperfectly known boundary. SIAM J Appl Math 66: 365–383

    Article  MathSciNet  MATH  Google Scholar 

  70. Kuchment P, Kunyansky L (2008) Mathematics of thermoacoustic tomography. Euro J Appl Math 19:191–224

    Article  MathSciNet  MATH  Google Scholar 

  71. Kuchment P, Kunyansky L Synthetic focusing in ultrasound modulated tomography. Inverse Prob Imag to appear

    Google Scholar 

  72. Kwon O, Seo JK (2001) Total size estimation and identification of multiple anomalies in the inverse electrical impedance tomography. Inverse Prob 17:59–75

    Article  MathSciNet  MATH  Google Scholar 

  73. Kwon O, Seo JK, Yoon JR (2002) A real-time algorithm for the location search of discontinuous conductivities with one measurement. Comm Pure Appl Math 55:1–29

    Article  MathSciNet  MATH  Google Scholar 

  74. Kwon O, Yoon JR, Seo JK, Woo EJ, Cho YG (2003) Estimation of anomaly location and size using impedance tomography. IEEE Trans Biomed Eng 50:89–96

    Article  Google Scholar 

  75. Li X, Xu Y, He B (2006) Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue. J Appl Phys 99, Art. No. 066112

    Google Scholar 

  76. Li X, Xu Y, He B (2007) Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI). IEEE Trans Biomed Eng 54:323330

    Article  Google Scholar 

  77. Lipton R (1993) Inequalities for electric and elastic polarization tensors with applications to random composites. J Mech Phys Solids 41:809–833

    Article  MathSciNet  MATH  Google Scholar 

  78. Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, Felmlee JP, Greenleaf JF, Ehman RL (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5:237–254

    Article  Google Scholar 

  79. Milton GW (2001) The theory of composites. Cambridge University Press, Cambridge, Cambridge monographs on applied and computational mathematics

    Google Scholar 

  80. Montalibet A, Jossinet J, Matias A, Cathignol D (2001) Electric current generated by ultrasonically induced Lorentz force in biological media. Med Biol Eng Comput 39:15–20

    Article  Google Scholar 

  81. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857

    Article  Google Scholar 

  82. Mast TD, Nachman A, Waag RC (1997) Focusing and imagining using eigenfunctions of the scattering operator. J Acoust Soc Am 102: 715–725

    Article  Google Scholar 

  83. Parisky YR, Sardi A, Hamm R, Hughes K, Esserman L, Rust S, Callahan K (2003) Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. Am J Radiol 180:263–269

    Google Scholar 

  84. Patch SK, Scherzer O (2007) Guest editors’ introduction: photo- and thermo-acoustic imaging. Inverse Prob 23:S1–10

    Article  MathSciNet  MATH  Google Scholar 

  85. Pernot M, Montaldo G, Tanter M, Fink M (2006) “Ultrasonic stars” for time-reversal focusing using induced cavitation bubbles. Appl Phys Lett 88:034102

    Article  Google Scholar 

  86. Pinker S (1997) How the mind works. Penguin Science, Harmondsworth

    Google Scholar 

  87. Prada C, Thomas J-L, Fink M (1995) The iterative time reversal process: analysis of the convergence. J Acoust Soc Am 97:62–71

    Article  Google Scholar 

  88. Seo JK, Kwon O, Ammari H, Woo EJ (2004) Mathematical framework and anomaly estimation algorithm for breast cancer detection using TS2000 configuration. IEEE Trans Biomed Eng 51:1898–1906

    Article  Google Scholar 

  89. Seo JK, Woo EJ (2009) Multi-frequency electrical impedance tomography and magnetic resonance electrical impedance tomography in mathematical modeling in biomedical imaging I, Lecture Notes in Mathematics: Mathematical Biosciences Subseries, vol 1983. Springer, Berlin

    Google Scholar 

  90. Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, Fink M (2005) Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Mag Res Med 53:372–387

    Article  Google Scholar 

  91. Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M (2007) MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Mag Res Med 58:1135–1144

    Article  Google Scholar 

  92. Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M (2005) Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Mag Res Imag 23: 159–165

    Article  Google Scholar 

  93. Tanter M, Fink M (2009) Time reversing waves for biomedical applications in mathematical modeling in biomedical imaging I, Lecture Notes in Mathematics: Mathematical Biosciences Subseries, vol 1983. Springer, Berlin

    Google Scholar 

  94. Therrien CW (1992) Discrete random signals and statistical signal processing. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  95. Vogelius MS, Volkov D (2000) Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities. Math Model Numer Anal 34:723–748

    Article  MathSciNet  MATH  Google Scholar 

  96. Wang LV, Yang X (2007) Boundary conditions in photoacoustic tomography and image reconstruction. J Biomed Opt 12:014027

    Article  Google Scholar 

  97. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77: 041101

    Article  Google Scholar 

  98. Xu Y, Wang LV, Ambartsoumian G, Kuchment P (2004) Reconstructions in limited view thermoacoustic tomography. Med Phys 31: 724–733

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ammari, H., Kang, H. (2011). Expansion Methods. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_11

Download citation

Publish with us

Policies and ethics