Skip to main content
  • 97 Accesses

Synonyms

Hippocampal formation

Definition

The hippocampus is a C-shaped, three-layered, subcortical structure, located within the medial temporal lobes, adjacent to the amygdala (Fig. 1). This phylogenetically ancient structure is divided into three continuous sections, referred to as cornu Ammonis [CA], one through three (Fig. 2). The hippocampus proper is an anatomical subdivision of the hippocampal formation, which also encompasses the dentate gyrus and the subiculum (Fig. 3). Here, the term “hippocampus” will be utilized to refer to all three components of the hippocampal formation. Possessing a unique neuroanatomical, neurochemical, and electrophysiological organization, the hippocampus serves as a component of the limbic system as well as primarily functions in the formation of new memories and in spatial navigation.

Hippocampus. Figure 1
figure 83 figure 83

The hippocampal formation in a sagittal magnetic resonance imaging. (Reproduced from Mendoza & Foundas, 2008)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,350.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Readings

  • Alvarez, P., & Squire, L. R. (1994). Memory consolidation and the medial temporal lobe: A simple network model. Proceedings of the National Academy of Science USA, 91, 7041–7045.

    Google Scholar 

  • Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.

    PubMed Central  PubMed  Google Scholar 

  • Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Chang, B. S., & Lowenstein, D. H. (2003). Mechanisms of disease: Epilepsy. The New England Journal of Medicine, 349, 1257–1266.

    PubMed  Google Scholar 

  • Cohen, N. J., & Squire, L. R. (1980). Preserved learning and retention of pattern analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210, 207–209.

    PubMed  Google Scholar 

  • Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Boston: MIT Press.

    Google Scholar 

  • Eichenbaum, H., Fagan, A., Mathews, P., & Cohen, N. J. (1988). Hippocampal system dysfunction and odor discrimination learning in rats: Impairment or facilitation depending on representational demands. Behavioral Neuroscience, 102, 331–339.

    PubMed  Google Scholar 

  • Eichenbaum, H., Mathews, P., & Cohen, N. J. (1989). Further studies of hippocampal representation during odor discrimination learning. Behavioral Neuroscience, 103, 1207–1216.

    PubMed  Google Scholar 

  • Eichenbaum, H., Stewart, C., & Morris, R. G. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10, 3531–3542.

    PubMed  Google Scholar 

  • Gold, J. J., & Squire, L. R. (2006). The anatomy of amnesia: Neurohistological analysis of three new cases. Learning and Memory, 13, 699–710.

    PubMed Central  PubMed  Google Scholar 

  • Horel, J. A. (1978). The neuroanatomy of amnesia. A critique of the hippocampal memory hypothesis. Brain, 101, 403–445.

    PubMed  Google Scholar 

  • Jack, C. R., Jr., Peterson, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., et al. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49, 786–794.

    PubMed Central  PubMed  Google Scholar 

  • Kandel, E. R. (2000). Cellular mechanisms of learning and the biological basis of individuality. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of Neural Science (pp. 1247–1277). New York: McGraw-Hill.

    Google Scholar 

  • Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P., et al. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1, 69–73.

    PubMed  Google Scholar 

  • Mendoza, J., & Foundas, A. L. (2008). Clinical neuroanatomy: A neurobehavioral approach. New York: Springer.

    Google Scholar 

  • Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273, 297–298.

    PubMed  Google Scholar 

  • Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal cortex. Current Opinion in Neurology, 7, 217–227.

    Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Research, 34, 171–175.

    PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. New York: Oxford University Press.

    Google Scholar 

  • Penfield, W., & Milner, B. (1958). Memory deficits produced by bilateral lesions in the hippocampal zone. Archives of Neurological Psychiatry, 79, 145–154.

    Google Scholar 

  • Peterson, R. C., Jack, C. R., Jr., Xu, Y. C., Waring, S. C., O’Brien, P. C., Smith, G. E., et al. (2000). Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 54, 581–587.

    Google Scholar 

  • Scoville, W., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.

    PubMed Central  PubMed  Google Scholar 

  • Smith, D. M., & Mizumori, S. J. Y. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16, 716–729.

    PubMed  Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.

    PubMed  Google Scholar 

  • Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–403). New York: Academic Press.

    Google Scholar 

  • Vinken, P. J., Meinardi, H., & Bruyn, G. W. (2000). Handbook of clinical neurology: The epilepsies. Amsterdam: Elsevier Science B. V.

    Google Scholar 

  • Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron, 27, 623–633.

    PubMed  Google Scholar 

  • Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1986). Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience, 6, 2950–2967.

    PubMed  Google Scholar 

  • Zola-Morgan, S., Squire, L. R., & Mishkin, M. (1982). Neuroanatomy of amnesia: Amygdala-hippocampus versus temporal stem. Science, 218, 1337–1339.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Waxman, A. (2011). Hippocampus. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds) Encyclopedia of Clinical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79948-3_1126

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79948-3_1126

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-79947-6

  • Online ISBN: 978-0-387-79948-3

  • eBook Packages: Behavioral Science

Publish with us

Policies and ethics