Prebiotic Potential of Xylo-Oligosaccharides

  • H. Mäkeläinen
  • M. Juntunen
  • O. Hasselwander


Xylo-oligosaccharides (XOS) are chains of xylose molecules linked with β1–4 bonds (Figure 8.1 ) with degree of polymerization ranging from 2 to 10.


Short Chain Fatty Acid Defecation Frequency Bifidobacterium Lactis Human Intervention Study Pure Culture Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


aberrant crypt foci


acetylated xylo-oligosaccharides






degree of polymerization




xylo-oligosaccharides containing a 4-O-methylglucuronic acid group






non-substituted xylo-oligosaccharides


optical density


short chain fatty acids


soybean oligosaccharides






  1. Alonso JL, Domínguez H, Garrote G, Parajó JC, Vázquez MJ (2003) Xylo-oligosaccharides: properties and production technologies. Electron J Environ Agric Food Chem 2:230–232Google Scholar
  2. Campbell JM, Fahey GC, Jr, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136Google Scholar
  3. Chung YC, Hsu CK, Ko CY, Chan YC (2007) Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr Res 27:756–761CrossRefGoogle Scholar
  4. Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerström R, Mättö J, Saarela M, Mattila-Sandholm T, Poutanen K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789CrossRefGoogle Scholar
  5. Fujikava S, Okazaki M, Matsumoto N (1991) Effect of xylooligosaccharide on growth of intestinal bacteria and putrefaction products. J Jpn Soc Nutr Food Sci 44:37–40 (in Japanese, abstract in English)Google Scholar
  6. Gibson G, Probert H, Van Loo J, Roberfroid MB, Rastall RA (2004) Dietary modulation of thehuman colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275CrossRefGoogle Scholar
  7. Hopkins M Cummings JH, Macfarlane GT (1998) Inter-species differences in maximum spesific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J Appl Microbiol 85:381–386CrossRefGoogle Scholar
  8. Howard M, Gordon D, Garleb KA, Kerley MS (1995) Dietary fructooligosaccharide, xylooligosaccharide and gum arabic have variable effects on cecal and colonic microbiota and epithelial cell proliferation in mice and rats. J Nutr 125:2604–2609Google Scholar
  9. Hsu C, Liao J, Chung Y, Hsieh CP, Chan YC (2004) Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J Nutr 134:1523–1528Google Scholar
  10. Iino T, Nishijima Y, Sawada S, Sasaki H, Harada H, Suwa Y, Kiso Y (1997) Improvement of constipation by a small amount of xylooligosaccharides ingestion in adult women. J Jpn Assoc Dietary Fiber Res 1:19–24 (in Japanese, abstract in English)Google Scholar
  11. Imaizumi K, Nakatsu Y, Sato M, Sedarnawati Y, Sugano M (1991) Effects of Xylooligosaccharides on Blood Glucose, serum and liver lipids and cecum short-chain fatty acids in diabetic rats. Agric Biol Chem 55:199–205Google Scholar
  12. Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K (1998) Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol 49:175–181CrossRefGoogle Scholar
  13. Kabel M, Kortenoeven L, Schols HA, Voragen AG (2002) In vitro fermentability of differently substituted xylo-oligosaccharides. J Agric Food Chem 50:6205–6210CrossRefGoogle Scholar
  14. Kobayashi T, Okazaki M, Fujikawa S, Koga K (1991) Effect of Xylooligosaccharides on Feces of Men. J Jpn Soc Biosci Biotech Agrochem 65:1651–1653 (in Japanese, abstract in English)Google Scholar
  15. Koga K, Fujikawa S (1993) Xylo-oligosaccharides In: Nakakuki T Oligosaccharides: Production, Properties and Applications, Japanese Technology Reviews. Gordon and Breach Science Publishers, Yverdon, pp. 130–143Google Scholar
  16. Kontula P, von Wright A, Mattila-Sandholm, T (1998) Oat bran beta-gluco- and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. Int J Food Microbiol 45:163–169CrossRefGoogle Scholar
  17. Mintel, Global new products database (gnpd), Accessed on 10th of July 2008
  18. Moura P, Barata R, Carvalheiro F, Gírio F, Loureiro-Dias M, Paula Esteves M. (2007) In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT 40:963–972CrossRefGoogle Scholar
  19. Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923CrossRefGoogle Scholar
  20. Nakakuki T (2003) Development of Functional Oligosaccharides in Japan. Trends Glycosci Glycotechnol 15:57–64Google Scholar
  21. Okazaki M, Fujikava S, Matsumoto N (1990a) Effect of xylooligosaccharide on the growth of Bifidobacteria. Bifidobacteria Microflora 9:77–86Google Scholar
  22. Okazaki M, Fujikava S, Matsumoto N. (1990b) Effects of Xylooligosaccharides on growth of bifidobacteria. J Jpn Soc Nutr Food Sci 43:395–401 (in Japanese, abstract in English)Google Scholar
  23. Okazaki M, Koda H, Izumi R, Fujikava S, Matsumoto N. (1991) In vitro digestibility and in vivo utilization of xylobiose. J Jpn Soc Nutr Food Sci 44:41–44 (in Japanese, abstract in English)Google Scholar
  24. Palframan R, Gibson GR, Rastall RA (2003) Carbohydrate preferences of befidobacterium species isolated from the human gut. Curr Issues Intest Microbiol 4:71–75Google Scholar
  25. Rycroft C, Jones M, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887CrossRefGoogle Scholar
  26. Santos A, San Mauro M, Diaz DM (2006) Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiol 23:498–503CrossRefGoogle Scholar
  27. Taniguchi H. (2004) Carbohydrate research and industry in Japan and the Japanese society of applied glycoscience. Starch 56:1–5CrossRefGoogle Scholar
  28. Tateyama I, Hashi K, Johno I, Iino T, Hirai, K, Suwa Y, Kiso Y (2005) Effects of xylooligosaccharide intake on severe constipation in pregnant women. J Nutr Sci Vitaminol 51:445–448Google Scholar
  29. Van Laere K, Hartemink R, Bosveld M, Schols HA, Voragen AG (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 48:1644–1652CrossRefGoogle Scholar
  30. Vázquez M, Alonso J, Dominguez H, Parajó JC (2000) Xylo-oligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393CrossRefGoogle Scholar
  31. Yamada H, Itoh K, Morishita Y, Taniguchi H (1993) Structure and properties of oligosaccharides from wheat bran. Cereal Foods World 38:490–492Google Scholar
  32. Younes H, Garleb K, Behr S, Remesy C, Demigne C (1995) Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J Nutr 125:1010–1016Google Scholar
  33. Zampa A, Silvi S, Fabiani R, Morozzi G, Orpianesi C, Cresci A(2004) Effects of different digestible carbohydrates on bile acid metabolism and SCFA production by human gut micro-flora grown in an in vitro semi-continuous culture. Anaerobe 10:19–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • H. Mäkeläinen
    • 1
  • M. Juntunen
    • 1
  • O. Hasselwander
    • 2
  1. 1.Health & Nutrition, Danisco FinlandKantvikFinland
  2. 2.Technology & Business DevelopmentDanisco (UK) LimitedRedhilUK

Personalised recommendations