# Discrete Wavelet Transform (DWT)

• Reference work entry
• 1603 Accesses

## Definition

Discrete Wavelet Transform is a technique to transform image pixels into wavelets, which are then used for wavelet-based compression and coding.

The DWT is defined as [1]:

$$W_\varphi (j_0 ,k) = {1\over\sqrt M }\sum\limits_{x} {f(x)\varphi _{j_0 ,k} } (x)$$
((1))
$$W_\psi (j,k) = {1\over\sqrt M }\sum\limits_k {f(x)\psi _{j,k} (x)}$$
((2))

for jj 0 and the Inverse DWT (IDWT) is defined as:

$$\begin{array}{*{20}l}f(x) = & {1\over{\sqrt {M} }}\sum\limits_{k} {W_\varphi (j_0 ,k)\varphi_{j_0 ,k} (x)} \\ &+ {1\over{\sqrt M }}\sum\limits_{j = j_0 }^\infty{\sum\limits_{k} {W_\psi (\,j,k)\psi_{j,k}} (x).}\end{array}$$
((3))

where f(x), $$\varphi _{j_0 ,k} (x)$$, and ψ j,k (x) are functions of the discrete variable x = 0,1,2,…,M−1. Normally we let j 0 = 0 and select M to be a power of 2 (i.e., M = 2J) so that the summations in Equations (1), (2) and (3) are performed over x = 0,1,2,…,M−1, j = 0,1,2,…, J−1, and k = 0,1,2,…,2 j− 1. The coefficients defined in Equations (1) and (2)...

This is a preview of subscription content, access via your institution.

Chapter
USD   29.95
Price excludes VAT (USA)
• DOI: 10.1007/978-0-387-78414-4_305
• Chapter length: 1 pages
• Own it forever
• Exclusive offer for individuals only
• Tax calculation will be finalised during checkout
eBook
USD   449.00
Price excludes VAT (USA)
• ISBN: 978-0-387-78414-4
• Own it forever
• Exclusive offer for individuals only
• Tax calculation will be finalised during checkout
Hardcover Book
USD   599.99
Price excludes VAT (USA)

## References

1. R. Gonzalez and R. Woods, “Digital Image Processing,” Prentice Hall, Englewood Cliffs, NJ, 2002.

## Rights and permissions

Reprints and Permissions

### Cite this entry

(2008). Discrete Wavelet Transform (DWT). In: Furht, B. (eds) Encyclopedia of Multimedia. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78414-4_305