Encyclopedia of Biometrics

2009 Edition
| Editors: Stan Z. Li, Anil Jain

Face Recognition, Component-Based

  • Onur C. Hamsici
  • Aleix M. Martinez
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-73003-5_93



A major problem in face recognition is to design algorithms that are invariant to those image changes typically observed when capturing faces in real environments. A large group of important image variations can be addressed using a component-based approach, where each face is first analyzed by parts and then the results are combined to provide a global solution. The image variations that are generally tackled with this approach are those due to occlusion, expression, and pose [1]. It has been argued that these changes have a lesser effect on local regions than to the whole of face image. Differences exist on how to formulate the component-based approach. Some of the algorithms use local information and combine these using a global decision maker. Some extract the important local parts to represent the face distributions, while others learn the distribution of the components generated by the...

This is a preview of subscription content, log in to check access.


  1. 1.
    Martinez, A.M.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 748–763 (2002)CrossRefGoogle Scholar
  2. 2.
    P. Belhumeur, D.K.: What is the set of images of an object under all possible illumination conditions? Int. J. Comput. Vis. 28(3), 245–260 (1998)CrossRefGoogle Scholar
  3. 3.
    Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., Vandermalsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3), 300–311 (1993)CrossRefGoogle Scholar
  4. 4.
    Wiskott, L., Fellous, J.M., Kruger, N., vonderMalsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)CrossRefGoogle Scholar
  5. 5.
    Martinez, A.M.: Recognition of partially occluded and/or imprecisely localized faces using a probabilistic approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, SC, USA (2000)Google Scholar
  6. 6.
    Martinez, A., Benavente, R.: The AR-face database. Tech. rep., CVC Tech. Report # 24 (1998)Google Scholar
  7. 7.
    Zhang, Y.B., Martinez, A.M.: A weighted probabilistic approach to face recognition from multiple images and video sequences. Image Vis. Comput. 24(6), 626–638 (2006)CrossRefGoogle Scholar
  8. 8.
    Park, B.G., Lee, K.M., Lee, S.U.: Face recognition using Face-ARG matching. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1982–1988 (2005)CrossRefGoogle Scholar
  9. 9.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefGoogle Scholar
  10. 10.
    Guillamet, D., Bressan, M., Vitrià, J.: Weighted non-negative matrix factorization for local representations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, pp. 942–947 (2001)Google Scholar
  11. 11.
    Zana, Y., Cesar, R.M., Feris, R., Turk, M.: Local approach for face verification in polar frequency domain. Image Vis. Comput. 24(8), 904–913 (2006)CrossRefGoogle Scholar
  12. 12.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, New York (1990)Google Scholar
  13. 13.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)CrossRefGoogle Scholar
  14. 14.
    Heisele, B., Serre, T., Poggio, T.: A component-based framework for face detection and identification. Int. J. Comput. Vis. 74(2), 167–181 (2007)CrossRefGoogle Scholar
  15. 15.
    Chang, K.I., Bowyer, K.W., Flynn, P.J.: Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1695–1700 (2006)CrossRefGoogle Scholar
  16. 16.
    Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1475–1490 (2004)CrossRefGoogle Scholar
  17. 17.
    Carlson, A.J., Cumby, C., Rosen, J., Roth, D.: The snow learning architecture. Tech. rep., Technical Report UIUCDCS-R-99-2101, Computer Science Department, University of Illinois at Urbana-Champaign (1999)Google Scholar
  18. 18.
    Guo, G., Dyer, C.: Patch-based image correlation with rapid filtering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Minneapolis, Minnesola, USA (2007)Google Scholar
  19. 19.
    Martinez, A.M.: Face image retrieval using hmms. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Workshop) Ft. Collins, CO, USA (1999)Google Scholar
  20. 20.
    Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA (2004)Google Scholar
  21. 21.
    Zou, J., Ji, Q., Nagy, G.: A comparative study of local matching approach for face recognition. IEEE Trans. Image Process. 16(10), 2617–2628 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Onur C. Hamsici
    • 1
  • Aleix M. Martinez
    • 1
  1. 1.The Ohio State UniversityColumbusUSA