Encyclopedia of Biometrics

2009 Edition
| Editors: Stan Z. Li, Anil Jain

Face Detection

  • Ming-Hsuan Yang
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-73003-5_87

Synonym

Definition

Face detection is concerned with finding whether there are any faces in a given image (usually in gray scale) and, if present, return the image location and content of each face. This is the first step of any fully automatic system that analyzes the information contained in faces (e.g., identity, gender, expression, age, race, and pose). While earlier work dealt mainly with upright frontal faces, several systems have been developed that are able to detect faces fairly accurately with in-plane or out-of-plane rotations in real time. Although a face detection module is typically designed to deal with single images, its performance can be further improved if video stream is available.

Introduction

The advances of computing technology has facilitated the development of real-time vision modules that interact with humans in recent years. Examples abound, particularly in biometrics and human computer interaction as the information contained in faces needs...

This is a preview of subscription content, log in to check access

References

  1. 1.
    Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998)CrossRefGoogle Scholar
  2. 2.
    Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–28 (1998)CrossRefGoogle Scholar
  3. 3.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  4. 4.
    Schneiderman, H., Kanade, T.: Object detection using the statistics of parts. Int. J. Comput. Vision 56(3), 151–177 (2004)CrossRefGoogle Scholar
  5. 5.
    Yang, M.H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)CrossRefGoogle Scholar
  6. 6.
    Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by components. IEEE Trans. Pattern Anal. Mach. Intell. 23(4), 349–361 (2001)CrossRefGoogle Scholar
  7. 7.
    Heisele, B., Serre, T., Poggio, T.: A component-based framework for face detection and identification. Int. J. Comput. Vision 74(2), 167–181 (2007)CrossRefGoogle Scholar
  8. 8.
    Fleuret, F., Geman, D.: Coarse-to-fine face detection. Int. J. Comput. Vision 41(12), 85–107 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Papageorgiou, C., Poggio, T.: A trainable system for object recognition. Int. J. Comput. Vision 38(1), 15–33 (2000)MATHCrossRefGoogle Scholar
  10. 10.
    Dollar, P., Tu, Z., Tao, H., Belongie, S.: Feature mining for image classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  11. 11.
    Li, S., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1112–1123 (2004)CrossRefGoogle Scholar
  12. 12.
    Huang, C., Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview face detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 671–686 (2007)CrossRefGoogle Scholar
  13. 13.
    Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Jones, M., Viola, P.: Fast multi-view face detection. Technical Report TR2003-96, Mitsubishi Electrical Research Laboratories (2003)Google Scholar
  16. 16.
    Viola, P., Jones, M.: Fast and robust classification using asymmetric Adaboost and a detector cascade. In: Advances in Neural Information Processing Systems, pp. 1311–1318 (2002)Google Scholar
  17. 17.
    Wu, J., Brubaker, S.C., Mullin, M., Rehg, J.: Fast asymmetric learning for cascade face detection. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 369–382 (2008)CrossRefGoogle Scholar
  18. 18.
    Pham, M.T., Cham, T.J.: Online learning asymmetric boosted classifiers for object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  19. 19.
    Brubaker, S.C., Wu, J., Sun, J., Mullin, M., Rehg, J.: On the design of cascades of boosted ensembles for face detection. Int. J. Comput. Vision 77(1–3), 65–86 (2008)CrossRefGoogle Scholar
  20. 20.
    Provost, F., Fawcett, T.: Robust classification for imprecise environments. Mach. Learn. 42(3), 203–231 (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–199 (1997)Google Scholar
  22. 22.
    Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Computationally efficient face detection. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, vol. 2, pp. 695–700 (2001)Google Scholar
  23. 23.
    Keren, D., Osadchy, M., Gotsman, C.: Antifaces: A novel fast method for image detection. IEEE Trans. Pattern Anal. Mach. Intell. 23(7), 747–761 (2001)CrossRefGoogle Scholar
  24. 24.
    Osadchy, M., LeCun, Y., Miller, M.: Synergistic face detection and pose estimation with energy-based models. J. Mach. Learn. Res. 1197–1214 (2007)Google Scholar
  25. 25.
    Ding, L., Martinez, A.: Precise detailed detection of faces and facial features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ming-Hsuan Yang
    • 1
  1. 1.University of CaliforniaMercedUSA