Encyclopedia of Biometrics

2009 Edition
| Editors: Stan Z. Li, Anil Jain

Face Sample Quality

  • Kui Jia
  • Shaogang Gong
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-73003-5_86



Face is a human biometric attribute that can be used to establish the identity of a person. A face-based biometric system operates by capturing probe face samples and comparing them against gallery face templates. The intrinsic characteristic of captured face samples determine their effectiveness for face authentication. Face sample quality is a measurement of these intrinsic characteristics. Face sample quality has significant impact on the performance of a face-based biometric system. Recognizing face samples of poor quality is a challenging problem. A number of factors can contribute toward degradation in face sample quality. They include, but not limited to, illumination variation, pose variation, facial expression change, face occlusion, low resolution, and high sensing noise.


A typical face-based biometric system operates by capturing face data (images or videos), and comparing the obtained face...
This is a preview of subscription content, log in to check access.


  1. 1.
    Gao, X.F., Li, S.Z., Liu, R., Zhang, P.R.: Standardization of face image sample quality. In: Proceedings of Second International Conference on Biometrics (ICB), pp. 242–251. Seoul, Korea (2007)Google Scholar
  2. 2.
    Brauckmann, M., Werner, M.: Technical report. In: Proceedings of NIST Biometric Quality Workshop. (2006)Google Scholar
  3. 3.
    Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)CrossRefGoogle Scholar
  4. 4.
    Zhao, W., Chellappa, R.: Robust Face Recognition Using Symmetric Shape-from-Shading. Technical Report, Center for Automation Research, University of Maryland (1999)Google Scholar
  5. 5.
    Tarr, M.J., Bulthoff, H.H.: Image-based object recognition in man, monkey and machine. Cognition 67, 1–20 (1998)CrossRefGoogle Scholar
  6. 6.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458(2003)CrossRefGoogle Scholar
  7. 7.
    Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)CrossRefGoogle Scholar
  8. 8.
    ISO/IEC JTC 1/SC 37 N 1477: Biometric Sample Quality Standard – Part 1: Framework (2006)Google Scholar
  9. 9.
    Abdel-Mottaleb, M., Mahoor, M.H.: Application notes - algorithms for assessing the quality of facial images. IEEE Comput. Intell. Mag. 2(2), 10–17 (2007)CrossRefGoogle Scholar
  10. 10.
    Baker, S., Kanade, T.: Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 230–245 (2007)CrossRefGoogle Scholar
  11. 11.
    Atick, J., Griffin, P., Redlich, A.: Statistical approach to shape from shading: reconstrunction of 3-dimensional face surfaces from single 2-dimentional images. Neural Comput. 8(2), 1321–1340 (1996)CrossRefGoogle Scholar
  12. 12.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3-D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Gong, S., Liddell, H.: Constructing facial identity surfaces for recognition. Int. J. Comput. Vision 53(1), 71–92 (2003)CrossRefGoogle Scholar
  14. 14.
    Cootes, T.F., Walker, K., Taylor, C.J.: View-based active appearance models. In: Proceedings of Fourth International Conference on Automatic Face and Gesture Recognition (FG), pp. 227–232. Grenoble, France (2000)Google Scholar
  15. 15.
    Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-Domain Super-Resolution for Face Recognition. IEEE Transactions on Image Processing, 12(5), 597–606 (2003)CrossRefGoogle Scholar
  16. 16.
    Jia, K., Gong, S.: Multi-modal tensor face for simultaneous super-resolution and recognition. In: Proceedings of Tenth International Conference on Computer Vision (ICCV), pp. 1683–1690. Beijing, China 2 (2005)Google Scholar
  17. 17.
    Jia, K., Gong, S.: Generalised face super-resolution. IEEE Transactions on Image Processing, 17(6), 873–886(2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kui Jia
    • 1
  • Shaogang Gong
    • 2
  1. 1.Shenzhen Institute of Advanced Integration TechnologyCAS/CUHK, ShenzhenPeople's Republic of China
  2. 2.Queen MaryUniversity of LondonLondonUK