Encyclopedia of Biometrics

2009 Edition
| Editors: Stan Z. Li, Anil Jain

Fingerprint Indexing

  • George Bebis
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-73003-5_57



When matching a query fingerprint to a large fingerprint database for identification purposes, a critical issue is how to narrow down the search space. Indexing provides a mechanism to quickly determine if a query fingerprint is in the database and to retrieve those fingerprints that are most similar with the query, without searching the whole database.


Fingerprint matching is one of the most popular and reliable biometric techniques used in automatic personal identification. Typically, fingerprint matching is based on low-level features determined by singularities in the finger ridge pattern known as minutiae. To be practical, matching should be robust to translation, rotation, scale, shear, occlusion, and clutter. In this context, matching two fingerprints implies finding a subset of minutiae in the first fingerprint that best match to a...

This is a preview of subscription content, log in to check access.


  1. 1.
    Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook on fingerprint recognition. Springer, Berlin (2003)Google Scholar
  2. 2.
    Lamdan, Y., Schwartz, J., Wolfson, H.: Affine invariant model-based object recognition. IEEE Trans. Robot. Automat. 6(5), 578–589 (1990)CrossRefGoogle Scholar
  3. 3.
    Califano, A., Mohan, R.: Multidimensional indexing for recognizing visual shapes. IEEE Trans. Pattern Analy. Mach. Intell. 16(4), 373–392 (1994)CrossRefGoogle Scholar
  4. 4.
    Bebis, G., Georgiopoulos, M., Shah, M., da Vitoria Lobo, N.: Indexing based on algebraic functions of views. Comput. Vision Image Understand. 72, 360–378 (1998)CrossRefGoogle Scholar
  5. 5.
    Lumini, A., Maio, D., Maltoni, D.: Continuous versus exclusive classification for fingerprint retrieval. Pattern Recogn. Lett. 18(10), 1027–1034 (1997)CrossRefGoogle Scholar
  6. 6.
    Cappelli, R., Lumini, A., Maio, D., Maltoni, D.: Fingerprint classification by directional image partitioning. IEEE Trans. Pattern Analy. Mach. Intell. 21(5), 402–421 (1999)CrossRefGoogle Scholar
  7. 7.
    Cappelli, R., Maio, D., Maltoni, D.: Multispace kl for pattern representation and classification. IEEE Trans. Pattern Analy. Mach. Intell. 23(9), 977–996 (2001)CrossRefGoogle Scholar
  8. 8.
    Li, J., Yau, W.Y., Wang, H.: Fingerprint indexing based on symmetrical measurement. Int. Conf. Pattern Recogn. 1, 1038–1041 (2006)Google Scholar
  9. 9.
    Germain, R., Califano, A., Colville, S.: Fingerprint matching using transformation parameter clustering. IEEE Computational Science and Engineering 4(4), 42–49 (1997)CrossRefGoogle Scholar
  10. 10.
    Bebis, G., Deaconu, T., Georgiopoulos, M.: Fingerprint identification using delaunay triangulation. In: IEEE, International Symposium on Information, Intelligence, and Systems, pp. 452–459 (1999)Google Scholar
  11. 11.
    Bhanu, B., Tan, X.: Fingerprint indexing based on novel features of minutiae triplets. IEEE Trans. Pattern Analy. Mach. Intell. 25(5), 616–622 (2003)CrossRefGoogle Scholar
  12. 12.
    Feng, J., Cai, A.: Fingerprint indexing using ridge invariants. Int. Conf. Pattern Recogn. 4, 433–436 (2006)Google Scholar
  13. 13.
    Ross, A., Mukherjee, R.: Augmenting ridge curves with minutiae triplets for fingerprint indexing. In: Prabhakar S., Ross A. (eds.) SPIE Defense and Security Symposium (Biometric Technology for Human Identification IV, vol. 6539) (2006)Google Scholar
  14. 14.
    Uz, T., Bebis, G., Erol, A., Prabhakar, S.: Minutiae-based template synthesis and matching using hierarchical delaunay triangulation. In: IEEE International Conference on Biometrics: Theory, Applications and Systems (2007)Google Scholar
  15. 15.
    Wolfson, H., Rigoutsos, I.: Geometric hashing: An overview. IEEE Comput. Sci. Eng. 4(4), 10–21 (1997)CrossRefGoogle Scholar
  16. 16.
    Bebis, G., Georgiopoulos, M., La Vitoria Lobo, N.: Using self-organizing maps to learn geometric hashing functions for model-based object recognition. IEEE Trans. Neural Networks 9(3), 560–570 (1998)CrossRefGoogle Scholar
  17. 17.
    Li, W., Bebis, G., Bourbakis, N.: Integrating algebraic functions of views with indexing and learning for 3D object recognition. IEEE Workshop on Learning in Computer Vision and Pattern Recognition (2004)Google Scholar
  18. 18.
    Nene, S., Nayar, S.: Closest point search in high dimensions. In: Computer Vision and Pattern Recognition Conference, pp. 859–865 (1998)Google Scholar
  19. 19.
    Beis, J., Lowe, D.: Shape indexing using approximate nearest-neighbor search in high-dimensional spaces. In: Computer Vision and Pattern Recognition Conference. pp. 1000–1006 (1997)Google Scholar
  20. 20.
    Grimson, W., Huttenlocher, D., Jacobs, D.: A study of affine matching with bounded sensor error. Int. J. Comput. Vision 13(1), 7–32 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • George Bebis

There are no affiliations available