Encyclopedia of Biometrics

2009 Edition
| Editors: Stan Z. Li, Anil Jain

Iris Recognition Using Correlation Filters

  • Yung-hui Li
  • Marios Savvides
  • Jason Thornton
  • B. V. K. Vijaya Kumar
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-73003-5_178

Synonym

Definition

Algorithms for iris recognition usually consist of applying feature extraction on raw iris pattern, then matching against features. However, two important techniques in machine learning and pattern recognition, namely probabilistic graphical model, and advanced correlation filters, have not been used for iris recognition. By using probabilistic graphical models for iris texture deformation, with the observation being the correlation output derived from applying correlation filters to local iris regions, problems of iris pattern local deformations and occlusions can be handled and recognition performance can be improved over that of the conventional iris recognition algorithms.

Introduction

In the past two decades, iris recognition has emerged as one of the most promising modalities for biometric recognition. Many algorithms have been proposed to improve the recognition performance of iris recognition....
This is a preview of subscription content, log in to check access

References

  1. 1.
    Thornton, J.: Matching Deformed and Occluded Iris Patterns: A Probabilistic Model Based on Discriminative Cues. Dissertation, Dept. of Electrical and Computer Engineering, Carnegie Mellon University (2007)Google Scholar
  2. 2.
    Thornton, J., Savvides, M., Vijaya Kumar, B.V.K.: Enhanced iris matching using estimation of in-plane nonlinear deformations. In: Proceedings of SPIE Defense and Security Symposium, Vol. 6202, 62020E (2006)Google Scholar
  3. 3.
    Kerekes, R., Narayanaswamy, B., Thornton, J., Savvides, M., Vijaya Kumar, B.V.K.: Graphical Model Approach to Iris Matching Under Deformation and Occlusion. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR ‘07). vol. June 2007, pp. 1–6, 17–22Google Scholar
  4. 4.
    Vijaya Kumar, B.V.K., Savvides, M., Venkataramani, K., Xie, C.: Spatial frequency domain image processing for biometric recognition. In: Proceedings of International Conference on Image Processing, September 2002, pp. 53–56Google Scholar
  5. 5.
    Savvides, M., Vijaya Kumar, B.V.K.: Efficient design of advanced correlation filters for robust distortion-tolerant face recognition. In: Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, July 2003, pp. 45–52Google Scholar
  6. 6.
    Thornton, J., Savvides, M., Vijaya Kumar, B.V.K.: Robust iris recognition using advanced correlation techniques. In: Proceedings of International Conference on Image Analysis and Recognition, September 2005, pp. 1098–1105Google Scholar
  7. 7.
    Vijaya Kumar, B.V.K., Mahalanobis A., Juday, R.D.: Correlation Pattern Recognition. Cambridge University Press, Cambridge, UK (2005)Google Scholar
  8. 8.
    Vijaya Kumar, B.V.K.: Tutorial survey of composite filter designs for optical correlators. Appl. Opt. 31, 4773–4801 (1992)CrossRefGoogle Scholar
  9. 9.
    Vijaya Kumar, B.V.K., Mahalanobis, A., Takessian, A.: Optimal tradeoff circular harmonic function corr1elation filter methods providing controlled in-plane rotation response. IEEE Trans. Image Process. 9(6), 1025–1034 (2000)CrossRefGoogle Scholar
  10. 10.
    Kerekes, R., Vijaya Kumar, B.V.K.: Correlation filters with controlled scale response. IEEE Trans. Image Process. 15(7), 1794–1802 (2006)CrossRefGoogle Scholar
  11. 11.
    Mahalanobis, A., Vijaya Kumar, B.V.K., Casasent, D.: Minimum average correlation energy filters. Appl. Opt. 26, 3630–3633 (1987)CrossRefGoogle Scholar
  12. 12.
    Vijaya Kumar, B.V.K., Carlson, D.W., Mahalanobis, A.: Optimal trade-off synthetic discriminant function filters for arbitrary devices. Opt. Lett. 19, 1556–1558 (1994)CrossRefGoogle Scholar
  13. 13.
    Perez, P.: Markov random fields and images. CWI Quarterly 11(4), 413–437 (1998)MathSciNetMATHGoogle Scholar
  14. 14.
    Felzenszwalb, P., Huttenlocher, D.: Markov random fields and images. Int. J. Comput. Vis. 70(1), 41–54 (2006)CrossRefGoogle Scholar
  15. 15.
    ICE iris database. National Institute of Standards and Technology. http://iris.nist.gov/ICE/, 2005. Accessed 1 March 27, 2009
  16. 16.
    Daugman, J.: How Iris Recognition Works. IEEE Trans. Circ. Syst. video Tech. 14(1), 21–30 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yung-hui Li
    • 1
  • Marios Savvides
    • 2
  • Jason Thornton
    • 2
  • B. V. K. Vijaya Kumar
    • 2
  1. 1.Language Technology InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA