Encyclopedia of Microfluidics and Nanofluidics

2008 Edition
| Editors: Dongqing Li

Amperometric Techniques

  • Thomas J. Roussel
  • Douglas J. Jackson
  • Richard P. Baldwin
  • Robert S. Keynton
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-48998-8_26

Synonyms

Amperometric detection; Controlled-potential instrumentation; Electrochemical detection; Oxidation/reduction

Definition

Amperometry is one of a family of electrochemical methods in which the potential applied to a sensing electrode is controlled instrumentally and the current occurring as a consequence of oxidation/reduction at the electrode surface is recorded as the analytical signal. In its simplest form, the applied potential is stepped to and then held at a constant value; and resulting current is measured as a function of time. When amperometric detectionis used in conjunction with separation techniques such as capillary electrophoresis or liquid chromatography, the sensing (or “working”) electrode is placed at the end of the separation stream so as to permit detection of sample components as they emerge and pass over the electrode surface. The applied potential must be sufficient to cause facile oxidation or reduction of the target analytes; and, in general, the...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Kissinger PT, Ridgway TH (1996) Small-Amplitude Controlled-Potential Techniques. In: Kissinger PT, Heineman WR (eds) Laboratory Techniques in Electroanalytical Chemistry, 2nd edn. Dekker, New York Google Scholar
  2. 2.
    Wallingford RA, Ewing AG (1987) Capillary zone electrophoresis with electrochemical detection. Anal Chem 59:1762–1766 Google Scholar
  3. 3.
    Haber C (1996) In: Landers JP (ed) Electrochemical detection in capillary electrophoresis. Handbook of Capillary Electrophoresis, 2nd edn. CRC, Boca Raton Google Scholar
  4. 4.
    Sloss S, Ewing AG (1993) Improved method for end-column amperometric detection for capillary electrophoresis. Anal Chem 65:577–581 Google Scholar
  5. 5.
    Wang J (2000) Analytical Electrochemistry, 2nd edn. Wiley-VCH, New York Google Scholar
  6. 6.
    Bard AJ, and Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applications, Chapter 13, 2nd edn. Wiley, Hoboken, p 580 Google Scholar
  7. 7.
    Osbourn DM, Lunte CE (2001) Cellulose acetate decoupler for on-column electrochemical detection in capillary electrophoresis. Anal Chem 73:5961–5964 Google Scholar
  8. 8.
    Osbourn DM, Lunte CE (2003) On-column electrochemical detection for microchip capillary electrophoresis. Anal Chem 75:2710–2714 Google Scholar
  9. 9.
    Klett O, Björefors F, Nyholm L (2001) Elimination of high-voltage field effects in end-column electrochemical detection in capillary electrophoresis by use of on-chip microband electrodes. Anal Chem 73:1909–1915 Google Scholar
  10. 10.
    Harrison DJ, Manz A, Fan Z, Ludi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932 Google Scholar
  11. 11.
    Woolley AT, Lao K, Glazer AN, Mathies RA (1998) Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 70:684–688 Google Scholar
  12. 12.
    Baldwin RP, Roussel Jr. TJ, Crain MM, Bathlagunda V, Jackson DJ, Gullapalli J, Conklin JA, Pai R, Naber JN, Walsh KM, Keynton RS (2002) Fully-integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device. Anal Chem 74:3690–3697 Google Scholar
  13. 13.
    Ertl P, Emrich CA, Singhai P, Mathies RA (2004) Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. Anal Chem 76:3749–3755 Google Scholar
  14. 14.
    Martin RS, Ratzlaff KL, Huynh BH, Lunte SM (2002) In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. Anal Chem 74:1136–1143 Google Scholar
  15. 15.
    Lacher NA, Lunte SM, Martin RS (2004) Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device. Anal Chem 76:2482–2491 Google Scholar
  16. 16.
    Lai CCJ, Chen CH, Ko FH (2004) In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler. J Chromatogr A 1023:143–150 Google Scholar
  17. 17.
    Wu CC, Wu RG, Huang JG, Lin YC, Chang HC (2003) Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection. Anal Chem 75:947–952 Google Scholar
  18. 18.
    Keynton RS, Roussel TJ, Crain MM, Jackson DJ, Franco DB, Naber JF, Walsh KM, and Baldwin RP (2004) Design and development of microfabricated capillary electrophoresis devices with electrochemical detection. Anal Chim Acta 507:95–105 Google Scholar
  19. 19.
    Vandaveer IV WR, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM (2004) Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 25:3528–3549 Google Scholar
  20. 20.
    Marwan J, Addou T, Belanger D (2005) Functionalization of glassy carbon electrodes with metal-based species. Chem Mater 17:2395–2403 Google Scholar
  21. 21.
    Sarapuu A, Helstein K, Schiffrin DJ, Tammeveski K (2005) Kinetics of oxygen reduction on quinone-modified HOPG and BDD electrodes in alkaline solution. Electrochem Sol State Lett 8:E30–E33 Google Scholar
  22. 22.
    Kavanagh P, Leech D (2006) Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Anal Chem 78:2710–2716 Google Scholar
  23. 23.
    Hebert NE, Snyder B, McCreery RL, Kuhr WG, Brazill SA (2003) Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal Chem 75:4265–4271 Google Scholar
  24. 24.
    Hebert NE, Kuhr WG, Brazill SA (2003) A microchip electrophoresis device with integrated electrochemical detection: A direct comparison of constant potential amperometry and sinusoidal voltammetry. Anal Chem 75:3301–3307 Google Scholar
  25. 25.
    Wang J, Chen G, Pumera M (2003) Microchip separation and electrochemical detection of amino acids and peptides following precolumn derivatization with naphthalene-2,3-dicarboxyaldehyde. Electroanalysis 15:862–865 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomas J. Roussel
    • 1
    • 3
  • Douglas J. Jackson
    • 2
  • Richard P. Baldwin
    • 3
  • Robert S. Keynton
    • 1
  1. 1.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of ChemistryUniversity of LouisvilleLouisvilleUSA