Skip to main content

Agriculture and Remote Sensing

  • Reference work entry
  • First Online:

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Definition

Reflectance. Light that is returned from the surface of an object in the same wavelength that impinged on the object.

Emittance. Emission of energy in wavelengths determined by the Stefan-Boltzmann relationship.

Vegetative index. Combination of wavelengths that are related to a specific canopy parameter.

Canopy parameters. Descriptions of factors that physically define the canopy, e.g., height, leaf area, biomass, yield.

Thermal index. Comparisons of canopy and air temperature that are related to crop water deficits.

Introduction

Agricultural scientists have used remote sensing for hundreds of years to observe plants to assess their vigor or stress from a multitude of factors. These original observations were not made with sensors but with the eye that determined the health of the plant. The calibration process was to compare the affected plant against a standard that the individual had observed before and deemed to be healthy. This type of analysis was possible because...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-36699-9_6
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   499.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-36699-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   499.00
Price excludes VAT (USA)
Figure 1
Figure 2
Figure 3

Bibliography

  • Allen, W. A., Gausman, H. W., Richardson, A. J., and Thomas, J. R., 1969. Interaction of isotropic light with a compact plant leaf. Journal of the Optical Society of America, 59, 1376–1379.

    Google Scholar 

  • Anderson, G. L., Everitt, J. H., Richardson, A. J., and Escobar, D. E., 1993. Using satellite data to map false broomweed (Ericameria austrotexana) infestations on south Texas rangelands. Weed Technology, 7, 865–871.

    Google Scholar 

  • Anderson, M. C., Kustas, W. P., and Norman, J. M., 2007. Upscaling flux observations from local to continental scales using thermal remote sensing. Agronomy Journal, 99, 240–254.

    Google Scholar 

  • Baret, F., Guyot, G., and Major, D. J., 1989. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In Proceedings of the IGARRS ‘0/12th Canadian Symposium on Remote Sensing, Vancouver, Canada, Vol. 3, pp. 1355–1358.

    Google Scholar 

  • Barnes, E. M., Sudduth, K. A., Hummel, J. W., Leach, S. M., Corwin, D. L., Yeng, C., Daughtry, C. S. T., and Bausch, W. C., 2003. Remote- and ground-based sensor techniques to map soil properties. Photogrammetric Engineering & Remote Sensing, 69, 619–630.

    Google Scholar 

  • Blazquez, C. H., and Edwards, G. J., 1983. Infrared color photography and spectral reflectance of tomato and potato diseases. Journal of Applied Photographic Engineering, 9, 33–37.

    Google Scholar 

  • Choudhury, B. J., 1987. Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Remote Sensing of Environment, 22, 209–233.

    Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown de Colstoun, E., and McMurtrey, J. E., III, 2000. Estimating corn leaf chlorophyll content from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Google Scholar 

  • Deering, D. W., 1978. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors. PhD dissertation, College Station, TX, Texas A&M University, 338 pp.

    Google Scholar 

  • Doraiswamy, P. C., Moulin, S., and Cook, P. W., 2003. Crop yield assessment from remote sensing. Photogrammetric Engineering & Remote Sensing, 69, 665–674.

    Google Scholar 

  • Everitt, J. H., Anderson, G. L., Esobar, D. E., Davis, M. R., Spencer, N. R., and Andrascik, R. J., 1995. Use of remote sensing for detecting and mapping leafy spurge (Euphorbia esula). Weed Technology, 9, 599–609.

    Google Scholar 

  • Feret, J. B., Francois, C., Asner, G. A., Gitelson, A. A., Martin, R. E., Bidel, L. P. R., Ustin, S. L., le Maire, G., and Jacquemoud, S., 2008. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112, 3030–3043.

    Google Scholar 

  • Gates, D. M., Keegan, H. J., Schleter, J. C., and Weidner, V. R., 1965. Spectral properties of plants. Applied Optics, 4, 11–20.

    Google Scholar 

  • Gausman, H. W., and Allen, W. A., 1973. Optical parameters of leaves of 30 plant species. Plant Physiology, 52(1), 57–62.

    Google Scholar 

  • Gausman, H. W., Allen, W. A., Myers, V. I., and Cardenas, R., 1969. Reflectance and internal structure of cotton leaves Gossypium hirsutum L. Agronomy Journal, 61, 374–376.

    Google Scholar 

  • Gitelson, A. A., Gritz, U., and Merzlyak, M. N., 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282.

    Google Scholar 

  • Gitelson, A. A., Viña, A., Verma, S. B., Rundquist, D. C., Arkebauer, T. J., Keydan, G., Leavitt, B., Ciganda, V., Burba, G. G., and Suyker, A. E., 2006. Relationship between gross primary production and chlorophyll content in crops: implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research, 111, D08S11, doi:10.1029/2005JD006017.

    CrossRef  Google Scholar 

  • Gitelson, A. A., Peng, Y., Masek, J. G., Rundquist, D. C., Verma, S., Suyker, A., Baker, J. M., Hatfield, J. L., and Meyers, T., 2012. Remote estimation of crop gross primary productivity with Landsat data. Remote Sensing of Environment, 121, 404–412.

    Google Scholar 

  • Haboudane, D., John, R., Millera, J. R., Tremblay, N., Zarco-Tejada, P. J., and Dextraze, L., 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.

    Google Scholar 

  • Hatfield, J. L., Asrar, G., and Kanemasu, E. T., 1984. Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sensing of Environment, 14, 65–75.

    Google Scholar 

  • Hatfield, J. L., Prueger, J. H., and Kustas, W. P., 2004. Remote sensing of dryland crops. In Ustin, S. L. (ed.), Remote sensing for natural resource management and environmental monitoring, 3rd edn. Hoboken, NJ: Wiley. Manual of remote sensing, Vol. 4, Chap. 10, pp. 531–568.

    Google Scholar 

  • Hatfield, J. L., Gitelson, A. A., Schepers, J. S., and Walthall, C. L., 2008. Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 100, S-117–S-131.

    Google Scholar 

  • Huete, A. R., 1988. A soil-adjusted vegetative index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Google Scholar 

  • Hunt, E. R., Everitt, J. H., Ritchie, J. C., Moran, M. S., Booth, D. T., Anderson, G. L., Clairk, P. E., and Seyfried, M. S., 2003. Applications and research using remote sensing for rangeland management. Photogrammetric Engineering & Remote Sensing, 69, 675–693.

    Google Scholar 

  • Idso, S. B., Jackson, R. D., Pinter, P. J., Jr., Reginato, R. J., and Hatfield, J. L., 1981. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55.

    Google Scholar 

  • Jackson, R. D., 1983. Spectral indices in n-space. Remote Sensing of Environment, 13, 409–421.

    Google Scholar 

  • Jackson, R. D., and Huete, A. R., 1991. Interpreting vegetation indices. Preventive Veterinary Medicine, 11, 185–200.

    Google Scholar 

  • Jackson, R. D., Idso, S. B., Reginato, R. J., and Pinter, P. J., Jr., 1981. Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138.

    Google Scholar 

  • Jordan, C. F., 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663–666.

    Google Scholar 

  • Kauth, R. J., and Thomas, G. S., 1976. The tasseled cap-A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data. West Lafayette, IN: Purdue University, pp. 41–51.

    Google Scholar 

  • Kustas, W. P., French, A. N., Hatfield, J. L., Jackson, T. J., Moran, M. S., Rango, A., Ritchie, J. C., and Schmugge, T. J., 2003. Remote sensing research in hydrometeorology. Photogrammetric Engineering & Remote Sensing, 69, 631–646.

    Google Scholar 

  • Lass, L. W., and Callihan, R. H., 1997. The effect of phenological stage on detectability of yellow hawkweed (Hieracium pratense) and oxeye daisy (Chrysanthemum leuanthemum) with remote multispectral digital imagery. Weed Technology, 11, 248–256.

    Google Scholar 

  • Maas, S. J., 1998. Estimating cotton canopy cover from remotely sensed scene reflectance. Agronomy Journal, 90, 384–388.

    Google Scholar 

  • Markwell, J., Osterman, J. C., and Mitchell, J. L., 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46, 467–472.

    Google Scholar 

  • Medlin, C. R., Shaw, D. R., Gerard, P. D., and LaMastus, F. E., 2000. Using remote sensing to detect weed infestations in Glycine max. Weed Science, 48, 393–398.

    Google Scholar 

  • Menges, R. M., Nixon, P. R., and Richardson, A. J., 1985. Light reflectance and remote sensing of weeds in agronomic and horticultural crops. Weed Science, 33, 569–581.

    Google Scholar 

  • Moran, S., Fitzgerald, G., Rango, A., Walthall, C., Barnes, E., Bausch, W., Clarke, T., Daughtry, C., Everitt, J., Escobar, D., Hatfield, J., Havstad, K., Jackson, T., Kitchen, N., Kustas, W., McGuire, M., Pinter, P., Jr., Sudduth, K., Schepers, J., Schmugge, T., Starks, P., and Upchurch, D., 2003. Sensor development and radiometric correction for agricultural applications. Photogrammetric Engineering & Remote Sensing, 69, 705–718.

    Google Scholar 

  • Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S., and Upchurch, D. R., 2003. Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69, 647–664.

    Google Scholar 

  • Richardson, A. J., and Weigand, C. L., 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541–1552.

    Google Scholar 

  • Richardson, A. J., Menges, R. M., and Nixon, P. R., 1985. Distinguishing weed from crop plants using video remote sensing. Photogrammetric Engineering and Remote Sensing, 51, 1785–1790.

    Google Scholar 

  • Riedell, W. E., and Blackmer, T. M., 1999. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science, 39, 1835–1840.

    Google Scholar 

  • Ritchie, J. C., Zimba, P. V., and Everitt, J. H., 2003. Remote sensing techniques to assess water quality. Photogrammetric Engineering & Remote Sensing, 69, 695–704.

    Google Scholar 

  • Rondeauz, G., Steven, M., and Baret, F., 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Google Scholar 

  • Shanahan, J. F., Schepers, J. S., Francis, D. D., Varvel, G. E., Wilhelm, W. W., Tringe, J. M., Schlemmer, M. R., and Major, D. J., 2001. Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal, 93, 583–589.

    Google Scholar 

  • Tanner, C. B., 1963. Plant temperature. Agronomy Journal, 55, 210–211.

    Google Scholar 

  • Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Google Scholar 

  • Wiegand, C. L., and Hatfield, J. L., 1988. The spectral-agronomic multisite-multicrop analyses (SAMMA) project. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 27(B7), 696–706.

    Google Scholar 

  • Wiegand, C. L., Gerbermann, A. H., Gallo, K. P., Blad, B. L., and Dusek, D., 1990. Multisite analyses of spectral-biophysical data for corn. Remote Sensing of Environment, 33, 1–16.

    Google Scholar 

  • Woolley, J. T., 1971. Reflectance and transmittance of light by leaves. Plant Physiology, 47, 656–662.

    Google Scholar 

  • Wu, C., Nu, Z., Tang, Q., and Huang, W., 2008. Estimating chlorophyll content from hyperspectral vegetative indices: modeling and validation. Agricultural and Forest Meteorologyis, 148, 1230–1241.

    Google Scholar 

  • Zhang, V., Chen, J. M., Miller, J. R., and Noland, T. L., 2008. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sensing of Environment, 112, 3234–3247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hatfield, J., Moran, S. (2014). Agriculture and Remote Sensing. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_6

Download citation

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.