Alexandratos, N., 1999. World food and agriculture: outlook for the medium and longer term. PNAS: Proceedings of the National Academy of Sciences, 96(11), 5908–5914.
Google Scholar
Benediktsson, J. A., and Kanellopoulos, I., 1999. Classification of multisource and hyperspectral data based on decision fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1367–1377.
Google Scholar
Bischof, H., Schneider, W., and Pinz, A. J., 1992. Multispectral classification of landsat-images using neural networks. IEEE Transaction on Geoscience and Remote Sensing, 30(3), 482–490.
Google Scholar
Busetto, L., Meroni, M., and Colombo, R., 2008. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series. Remote Sensing of Environment, 112, 118–131.
Google Scholar
Chang, J., Hansen, M. C., Pittman, K., Carroll, M., and DiMiceli, C., 2007. Corn and soybean mapping in the United States using MODIS time-series data sets. Agronomy Journal, 99, 1654–1664.
Google Scholar
Congalton, R. G., Balogh, M., Bell, C., Green, K., Milliken, J. A., and Ottman, R., 1998. Mapping and monitoring agricultural crops and other land cover in the Lower Colorado River Basin. Photogrammetric Engineering and Remote Sensing, 64(11), 1075–1118.
Google Scholar
De La Torre Ugarte, D., Walsh, M., Shapouri, H., and Slinksy, S., 2003. The economic impacts of bioenergy crop production on U.S. agriculture. U.S. Department of Agriculture, Office of the Chief Economist, Agricultural Economic Report 816.
Google Scholar
Hall, F. G., and Badhwar, G. D., 1987. Signature-extendable technology: global space-based crop recognition. IEEE Transactions on Geoscience and Remote Sensing, 25(1), 93–103.
Google Scholar
Haralick, R. M., Caspall, F., and Simonett, D. S., 1970. Using radar imagery for crop discrimination: a statistical and conditional probability study. Remote Sensing of Environment, 1, 131–142.
Google Scholar
Haralick, R. M., Shanmugam, K., and Dinstein, I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610–621.
Google Scholar
Haralick, R. M., Hlavka, C. A., Yokoyama, R., and Carlyle, S. M., 1980. Spectral-temporal classification using vegetation phenology. IEEE Transactions on Geoscience and Remote Sensing, 18(2), 167–174.
Google Scholar
Hogg, H., 1986. Agriculture and resource inventory survey through aerospace remote sensing (AgRISTARS). IEEE Transactions on Geoscience and Remote Sensing, 24(1), 185.
Google Scholar
Jakubauskas, M. E., Legates, D. R., and Kastens, J. H., 2002. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Computers and Electronics in Agriculture, 37, 127–139.
Google Scholar
Jensen, J. R., 2005. Digital change detection. In Jensen, J. R. (ed.), Introductory Digital Image Processing: A Remote Sensing Perspective. Englewood Cliffs: Prentice-Hall, pp. 467–494.
Google Scholar
Karjalainen, M., Kaartinen, H., and Hyypp, J., 2008. Agricultural monitoring using Envisat alternating polarization SAR images. Photogrammetric Engineering and Remote Sensing, 74(1), 117–128.
Google Scholar
Lucas, R., Rowlands, A., Brown, A., Keyworth, S., and Bunting, P., 2007. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 62(3), 165–185.
Google Scholar
Singh, A., 1989. Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003.
Google Scholar
Steele, B. M., 2000. Combining multiple classifiers. An application using spatial and remotely sensed information for land cover type mapping. Remote Sensing of Environment, 74(3), 545–556.
Google Scholar
Tilman, D., 1999. Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, 96(11), 5995–6000.
Google Scholar
Tilman, D., Fargione, J., Wolff, B., and d’Antonio, C., 2001. Forecasting agriculturally driven global environmental change. Science, 292, 281–284.
Google Scholar
Vailaya, A., Jain, A., Zhang, H. J., 1998. On image classification: city versus landscape. In IEEE Workshop on Content – Based Access of Image and Video Libraries (CBAIVL), Santa Barbara, CA, p. 3.
Google Scholar
Walsh, M., De La Torre, U. D., Shapouri, H., and Slinsky, S., 2003. The economic impacts of bioenergy crop production on U.S. Agriculture. Environmental and Resource Economics, 24, 313–333.
Google Scholar
Wang, Q., and Tenhunen, J. D., 2004. Vegetation mapping with multitemporal NDVI in North Eastern China Transect (NECT). International Journal of Applied Earth Observation and Geoinformation, 6, 17–31.
Google Scholar
Wardlow, B. D., Egbert, S. L., and Kastens, J. H., 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108, 290–310.
Google Scholar
Wharton, S. W., 1982. A contextual classification method for recognizing land use patterns in high resolution remotely sensed data. Pattern Recognition, 15(4), 317–324.
Google Scholar