Encyclopedia of Remote Sensing

2014 Edition
| Editors: Eni G. Njoku

Reflected Solar Radiation Sensors, Polarimetric

  • David J. DinerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-36699-9_157

Synonyms

Stokes measurements

Definitions

Stokes vector. A set of four parameters describing the polarization state of a beam of light, named for the Irish mathematical physicist George Gabriel Stokes (1819–1903). As an electromagnetic wave propagates, the orientation of the tip of the electric field vector traces out an ellipse. Specific manifestations of the polarization ellipse are linear polarization, where the electric field vibrates in a single plane, and circular polarization. The Stokes vector consists of intensity, I; the excess of horizontally over vertically polarized light, Q; the excess of light polarized at 45° over 135°, U; and the excess of right-handed over left-handed circular polarization, V. “Handedness” describes the direction in which the electric field vector rotates.

Degree of polarization. The ratio of polarized to total intensity is equal to \( \sqrt{{{Q^2}+{U^2}+{V^2}}}/I \)

This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

The research to prepare this contribution was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

Bibliography

  1. Auriol, F., Léon, J.-F., Balois, J.-Y., Verwaerde, C., François, P., Riedi, J., Parol, F., Waquet, F., Tanré, D., and Goloub, P., 2008. Multidirectional visible and shortwave infrared polarimeter for atmospheric aerosol and cloud observation: OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum). Proceedings of SPIE, 7149, 12.Google Scholar
  2. Barter, J. D., Thompson, H. R., Jr., and Richardson, C. L., 2003. Visible-regime polarimetric imager: a fully polarimetric, real-time imaging system. Applied Optics, 42, 1620–1628.CrossRefGoogle Scholar
  3. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H., 1999. SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56, 127–150.CrossRefGoogle Scholar
  4. Bréon, F.-M., and Goloub, P., 1998. Cloud droplet effective radius from spaceborne polarization measurements. Geophysical Research Letters, 25, 1879–1882.CrossRefGoogle Scholar
  5. Burrows, J. P., Weber, M., Buchwitz, M., Razonov, V., Ladstatter, A., Richter, A., De Beerk, R., Hoogen, R., Bramsdted, D., Eichmann, K. U., Eisenger, M., and Perner, D., 1999. The global ozone monitoring experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56, 151–175.CrossRefGoogle Scholar
  6. Cairns, B., Russell, E. E., LaVeigne, J. D., and Tennant, P. M. W., 2003. Research scanning polarimeter and airborne usage for remote sensing of aerosols. Proceedings of SPIE, 5158, 33–44.CrossRefGoogle Scholar
  7. Callies, J., Corpaccioli, E., Eisinger, M., Lefebvre, A., Munro, R., Perez-Albinana, A., Ricciarelli, B., Calamai, L., Gironi, G., Veratti, R., Otter, G., Eschen, M., and van Riel, L., 2003. GOME-2 the ozone instrument on-board the European METOP satellites. Proceedings of SPIE, 5158, 1–11.CrossRefGoogle Scholar
  8. Chepfer, H., Goloub, P., Riedi, J., Haan, J. F. D., Hovenier, J. W., and Flamant, P. H., 2001. Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. Journal of Geophysical Research, 106, 7955–7966.CrossRefGoogle Scholar
  9. Chipman, R. A., 1994. Polarimetry. In Bass, M. (ed.), Handbook of Optics, 2nd edn. New York: McGraw-Hill. Devices, Measurements and Properties, Vol. II. Chapter 22, 450 pp.Google Scholar
  10. Chowdhary, J., Cairns, B., and Travis, L. D., 2002. Case studies of aerosol retrievals over the ocean from multiangle, multispectral photopolarimetric remote sensing data. Journal of the Atmospheric Sciences, 59, 383–397.CrossRefGoogle Scholar
  11. Coffeen, D.L., 1974. Optical polarimeters in space. In Planets, Stars and Nebulae Studied with Photopolarimetry; Proceedings of Twenty-third Colloquium. Arizona: University of Arizona Press, pp. 189–217.Google Scholar
  12. Coffeen, D. L., Hämeen-Anttila, J., and Toubhans, R. H., 1975. Airborne infrared polarimeter. Space Science Instrumentation, 1, 161–175.Google Scholar
  13. Correia, A.L., Fernandez-Borda, R., and Martins, J.V., 2007. Preliminary results of the Cloud-Aerosol Interaction Measurements (CLAIM) 2007 campaign on the Amazon Basin, Brazil. Eos Transactions AGU, 88(52): Fall Meet. Suppl., Abstract A51D-0728.Google Scholar
  14. Coulson, K. L., Whitehead, V. S., and Campbell, C., 1986. Polarized views of the Earth from orbital altitude. Proceedings of SPIE, 637, 35–41.CrossRefGoogle Scholar
  15. Deschamps, P.-Y., Bréon, F. M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J.-C., and Sèze, G., 1994. The POLDER mission: instrument characteristics and scientific objectives. IEEE Transactions on Geoscience and Remote Sensing, 32, 598–615.CrossRefGoogle Scholar
  16. Deuzé, J. L., Devaux, C., Herman, M., Santer, R., Balois, J. Y., Gonzalez, L., Lecomte, P., and Verwaerde, C., 1989. Photopolarimetric observations of aerosols and clouds from balloon. Remote Sensing of Environment, 29, 93–109.CrossRefGoogle Scholar
  17. Deuzé, J. L., Bréon, F. M., Deschamps, P. Y., Devaux, C., Herman, M., Podaire, A., and Roujean, J. L., 1993. Analysis of the POLDER (POLarization and Directionality of Earth’s Reflectances) airborne instrument observations over land surfaces. Remote Sensing of Environment, 45, 137–154.CrossRefGoogle Scholar
  18. Diner, D. J., Davis, A., Hancock, B., Gutt, G., Chipman, R. A., and Cairns, B., 2007. Dual photoelastic modulator-based polarimetric imaging concept for aerosol remote sensing. Applied Optics, 46, 8428–8445.CrossRefGoogle Scholar
  19. Diner, D. J., Davis, A., Hancock, B., Geier, S., Rheingans, B., Jovanovic, V., Bull, M., Rider, D. M., Chipman, R. A., Mahler, A., and McClain, S. C., 2010. First results from a dual photoelastic-modulator-based polarimetric camera. Applied Optics, 49, 2929–2946.CrossRefGoogle Scholar
  20. Diner, D. J., Pingree, P. J., and Chipman, R. A., 2011. Novel airborne imaging polarimeter undergoes flight testing. SPIE Newsroom, 14 Nov 2011, doi:10.1117/2.1201111.003932.Google Scholar
  21. Egan, W.G., 1968. Aircraft polarimetric and photometric observations. In Proceedings, Fifth International Symposium on Remote Sensing of Environment. Ann Arbor: Environmental Research Institute of Michigan, pp. 169–189.Google Scholar
  22. Egan, W. G., Johnson, W. R., and Whitehead, V. S., 1991. Terrestrial polarization imagery obtained from the space shuttle: characterization and interpretation. Applied Optics, 30, 435–442.CrossRefGoogle Scholar
  23. Fernald, F. G., Herman, B. M., and Curran, R. J., 1969. Some polarization measurements of the reflected sunlight from desert terrain near Tucson, Ariz. Journal of Applied Meteorology, 8, 604–609.CrossRefGoogle Scholar
  24. Fernandez-Borda, R., Waluschka, E., Pellicori, S., Martins, J. V., Ramos-Izquierdo, L., Cieslak, J. D., and Thompson, P., 2009. Evaluation of the polarization properties of a Philips-type prism for the construction of imaging polarimeters. Proceedings of SPIE, 7461, 15.Google Scholar
  25. Gál, J., Horváth, G., Meyer-Rochow, V. B., and Wehner, R., 2001. Polarization patterns of the summer sky and its neutral points measured by full-sky imaging polarimetry in Finnish Lapland north of the Arctic Circle. Proceedings of the Royal Society London Series A, 457, 1385–1399.CrossRefGoogle Scholar
  26. Hagolle, O., Goloub, P., Deschamps, P. Y., Cosnefroy, H., Briottet, X., Bailleul, T., Nicolas, J. M., Parol, F., Lafrance, B., and Herman, M., 1999. Results of POLDER in-flight calibration. IEEE Transactions on Geoscience and Remote Sensing, 37, 1550–1566.CrossRefGoogle Scholar
  27. Halajian, J. and Hallock, H. 1972. Principles and techniques of polarimetric mapping. In Proceedings, Eight International Symposium on Remote Sensing of Environment. Ann Arbor: Environmental Research Institute of Michigan, pp. 523–540.Google Scholar
  28. Hansen, J.E., and Coffeen, D.L., 1974. Analysis of cloud polarization measurements. In Proceedings of the AMS Conference on Cloud Physics, October 21–24, Tucson, pp. 350–356.Google Scholar
  29. Hansen, J. E., and Hovenier, J. W., 1974. Interpretation of the polarization of Venus. Journal of the Atmospheric Sciences, 31, 1137–1160.CrossRefGoogle Scholar
  30. Hariharan, T. A., 1969. An airborne polarimeter for atmospheric radiation studies. Journal of Scientific Instruments (Journal of Physics E), 2, 10–12.CrossRefGoogle Scholar
  31. Herman, M., Balois, J. Y., Gonzalez, L., Lecomte, P., Lenoble, J., Santer, R., and Verwaerde, C., 1986. Stratospheric aerosol observations from a balloon-borne polarimetric experiment. Applied Optics, 25, 3573–3584.CrossRefGoogle Scholar
  32. Herman, M., Deuzé, J.-L., Marchand, A., Roger, B., and Lallart, P., 2005. Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model. Journal of Geophysical Research, 110, D10S02.CrossRefGoogle Scholar
  33. Hildum, E. A., and Spinhirne, J. D., 1992. An airborne system for collecting polarization imagery. Proceedings of SPIE, 1747, 200–204.CrossRefGoogle Scholar
  34. Hooper, B. A., Baxter, B., Piotrowski, C., Williams, J. Z., and Dugan, J., 2009. An airborne imaging multispectral polarimeter (AROSS-MSP). OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for our Future: Global and Local Challenges, Biloxi, MS, 26–29 October 2009.Google Scholar
  35. Horváth, G., Bernáth, B., Suhai, B., Barta, A., and Wehner, R., 2002. First observation of the fourth neutral polarization point in the atmosphere. Journal of the Optical Society of America A, 19, 2085–2099.CrossRefGoogle Scholar
  36. Jensen, G. L., and Peterson, J. Q., 1998. Hyperspectral imaging polarimeter in the infrared. Proceedings of SPIE, 3437, 42–51.CrossRefGoogle Scholar
  37. Jones, S. H., Iannarilli, F. J., Hostetler, C., Cairns, B., Cook, A., Hair, J., Harper, D., Hu, Y., and Flittner, D., 2006. Preliminary airborne measurement results from the hyperspectral polarimeter for aerosol retrievals (HySPAR). In NASA Earth Science Technology Conference Proceedings, http://esto.nasa.gov/conferences/ESTC2006/papers/b2p2.pdf.
  38. Krijger, J. M., Aben, I., and Schrijver, H., 2005. Distinction between clouds and ice/snow covered surfaces in the identification of cloud-free observations using SCIAMACHY PMDs. Atmospheric Chemistry and Physics, 5, 2729–2738.CrossRefGoogle Scholar
  39. Lawrence, G. M., Thomas, G. E., Kohnert, R. A., and Westfall, J., 1994. An ultraviolet imaging polarimeter for observing polar mesospheric clouds. Proceedings of SPIE, 2266, 232–241.CrossRefGoogle Scholar
  40. Lotz, W. A., Vountas, M., Dinter, T., and Burrows, J. P., 2009. Cloud and surface classification using SCIAMACHY polarization measurement devices. Atmospheric Chemistry and Physics, 9, 1279–1288.CrossRefGoogle Scholar
  41. Millard, J. P., and Arvesen, J. C., 1972. Airborne optical detection of oil on water. Applied Optics, 11, 102–107.CrossRefGoogle Scholar
  42. Mishchenko, M. I., Cairns, B., Kopp, G., Schueler, C. F., Fafaul, B. A., Hansen, J. E., Hooker, R. J., Itchkawich, T., Maring, H. B., and Travis, L. D., 2007. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission. Bulletin of the American Meteorological Society, 88, 677–691.CrossRefGoogle Scholar
  43. Parol, F., Buriez, J. C., Vanbauce, C., Riedi, J., Labonnote, L. C., Doutriaux-Boucher, M., Vesperini, M., Sèze, G., Couvert, P., Viollier, M., and Bréon, F.-M., 2004. Capabilities of multi-angle polarization cloud measurements from satellite: POLDER results. Advances in Space Research, 33, 1080–1088.CrossRefGoogle Scholar
  44. Peralta, R. J., Nardell, C., Cairns, B., Russell, E. E., Travis, L. D., Mishchenko, M. I., Fafaul, B. A., and Hooker, R. J., 2007. Aerosol polarimetry sensor for the Glory mission. Proceedings of SPIE, 6786, 17.Google Scholar
  45. Perry, G. L., Stearn, J. A., Vanderbilt, V. C., Ustin, S. L., Diaz Barrios, M. C., Morrissey, L. A., Livingston, G. P., Bréon, F.-M., Bouffies, S., Leroy, M. M., Herman, M., and Balois, J.-Y., 1997. Remote sensing of high-latitude wetlands using polarized wide-angle imagery. Proceedings- Spie The International Society For Optical Engineering, 3121, 375–386.Google Scholar
  46. Prosch, T., Hennings, D., and Raschke, E., 1983. Video polarimetry: a new imaging technique in atmospheric science. Applied Optics, 22, 1360–1363.CrossRefGoogle Scholar
  47. Rao, C. R. N., 1969. Balloon measurements of the polarization of light diffusely reflected by the Earth’s atmosphere. Planetary and Space Science, 17, 1307–1309.CrossRefGoogle Scholar
  48. Rao, C. R. N., and Sekera, Z., 1967. A research program aimed at high altitude balloon-borne measurements of radiation emerging from the Earth’s atmosphere. Applied Optics, 6, 221–225.CrossRefGoogle Scholar
  49. Riedi, J., 2011. 3MI: Operational monitoring of aerosols from EPS-SG. Workshop on Observations and Modeling of Aerosol and Cloud Properties for Climate Studies, Paris, France, 12–14 September 2011. http://ebookbrowse.com/riedi-3mi-on-posteps-workshopparis-sept2011-pdf-d292740300.
  50. Ruhtz, T., Pruesker, R., Hollstein, A., Bismarck, J. V., Starace, M., and Fischer, J., 2009. URMS/AMSSP (Universal Radiation Measurement System/Airborne Multi-Spectral Sunphoto- and Polarimeter). Proceedings of SPIE, 7475, 8.Google Scholar
  51. Stephens, G. L., McCoy, R. F., Jr., McCoy, R. B., Gabriel, P., Partain, P. T., and Miller, S. D., 2000. A multipurpose scanning spectral polarimeter (SSP): instrument description and sample results. Journal of Atmospheric and Oceanic Technology, 17, 616–627.CrossRefGoogle Scholar
  52. Tozer, W. F., and Beeson, D. E., 1974. Optical model of noctilucent clouds based on polarimetric measurements from two sounding rocket campaigns. Journal of Geophysical Research, 79, 5607–5612.CrossRefGoogle Scholar
  53. Tyo, J. S., Goldstein, D. L., Chenault, D. B., and Shaw, J. A., 2006. Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45, 5453–5469.CrossRefGoogle Scholar
  54. Waquet, F., Léon, J.-F., Goloub, P., Pelon, J., Tanré, D., and Deuzé, J.-L., 2005. Maritime and dust aerosol retrieval from polarized and multispectral active and passive sensors. Journal of Geophysical Research, 110, D10S10, doi:10.1029/2004JD004839.CrossRefGoogle Scholar
  55. Waquet, F., Cairns, B., Knobelspiesse, K., Chowdhary, J., Travis, L. D., Schmid, B., and Mishchenko, M. I., 2009. Polarimetric remote sensing of aerosols over land. Journal of Geophysical Research, 114, D01206.CrossRefGoogle Scholar
  56. Witt, G., Dye, J. E., and Wilhelm, N., 1976. Rocket-borne measurements of scattered sunlight in the mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 38, 223–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA