Encyclopedia of Remote Sensing

2014 Edition
| Editors: Eni G. Njoku

Rangelands and Grazing

  • Hunt E. RaymondJr.Email author
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-36699-9_155


Grasslands; Grazing lands; Pampas; Prairie; Savanna; Shrublands; Steppe


Rangelands. Type of land cover dominated by grasses, grasslike plants, broadleaf herbaceous plants (forbs), and shrubs, where the land is managed as a natural ecosystem for multiple uses including wildlife habitat, biodiversity, recreation, and grazing by livestock.

Pasturelands. Type of land cover dominated by grasses, grasslike plants, and broadleaf herbaceous plants, where the land is managed as an agricultural system for livestock production.

Plant community. Co-occurring plant species and their relative abundance and which is usually recognized by the dominant plant species or functional type.

Ecological site. A combination of soil, climate, and hydrological factors that have the potential for a distinctive climax plant community with a given amount of net primary production.

Rangelandhealth. The degree to which the integrity of the soil is maintained and ecological processes are sustained.

This is a preview of subscription content, log in to check access.


  1. Andrew, M. E., and Ustin, S. L., 2006. Spectral and physiological uniqueness of perennial pepperweed (Lepidium latifolium). Weed Science, 54, 1051–1062.CrossRefGoogle Scholar
  2. Arsenault, E., and Bonn, F., 2005. Evaluation of soil erosion protective cover by crop residues using vegetation indices and spectral mixture analysis of multispectral and hyperspectral data. Catena, 62, 157–172.CrossRefGoogle Scholar
  3. Asner, G. P., and Heidebrecht, K. B., 2002. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 23, 3939–3958.CrossRefGoogle Scholar
  4. BLM, 2005. Interpreting Indicators of Rangeland Health, Version 4. Technical Reference 1734–6. USDI Bureau of Land Management, National Science and Technology Center. Denver, CO: United States Department of Interior.Google Scholar
  5. Blumenthal, D., Booth, D. T., Cox, S. E., and Ferrier, C. E., 2007. Large-scale aerial images capture details of invasive plant populations. Rangeland Ecology & Management, 60, 523–528.CrossRefGoogle Scholar
  6. Booth, D. T., and Cox, S. E., 2006. Very large scale aerial photography for rangeland monitoring. Geocarto International, 21, 27–34.CrossRefGoogle Scholar
  7. Booth, D. T., and Cox, S. E., 2008. Image-based monitoring to measure ecological change in rangeland. Frontiers in Ecology and the Environment, 6, 185–190.CrossRefGoogle Scholar
  8. Booth, D. T., and Tueller, P. T., 2003. Rangeland monitoring using remote sensing. Arid Land Research and Management, 17, 455–467.CrossRefGoogle Scholar
  9. Booth, D. T., Cox, S. E., and Berryman, R. D., 2006. Point sampling digital imagery using “SamplePoint”. Environmental Monitoring and Assessment, 123, 97–108.CrossRefGoogle Scholar
  10. Booth, D. T., Cox, S. E., Meikle, T., and Zuuring, H. R., 2008. Ground-cover measurements: assessing correlation among aerial and ground-based methods. Environmental Management, 42, 1091–1100.CrossRefGoogle Scholar
  11. Booth, D. T., Cox, S. E., and Teel, D., 2010. Aerial assessment of leafy spurge (Euphorbia esula L.) on Idaho’s deep fire burn. Native Plants Journal, 11, 327–338.CrossRefGoogle Scholar
  12. Bradley, B. A., and Mustard, J. F., 2006. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecological Applications, 16, 1132–1147.CrossRefGoogle Scholar
  13. Briske, D. D., Fuhlendorf, S. D., and Smeins, F. E., 2005. State-and-transition models, thresholds, and rangeland health: a synthesis of ecological concepts and perspectives. Rangeland Ecology & Management, 58, 1–10.CrossRefGoogle Scholar
  14. Brown, M. E., Pinzón, J. E., Didan, K., Morisette, J. T., and Tucker, C. J., 2006. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Transactions on Geoscience and Remote Sensing, 44, 1787–1793.CrossRefGoogle Scholar
  15. Clark, P. E., and Hardegree, S. P., 2005. Quantifying vegetation change by point sampling landscape photography time series. Rangeland Ecology & Management, 58, 588–597.CrossRefGoogle Scholar
  16. Clements, F. E., 1916. Plant Succession: An Analysis of the Development of Vegetation. Washington, DC: Carnegie Institute of Washington. Carnegie Institute Publication, Vol. 242.CrossRefGoogle Scholar
  17. Daughtry, C. S. T., Hunt, E. R., Jr., and McMurtrey, J. E., III, 2004. Assessing crop residue cover using shortwave infrared reflectance. Remote Sensing of Environment, 90, 126–134.CrossRefGoogle Scholar
  18. Davenport, M. L., and Nicholson, S. E., 1993. On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in east Africa. International Journal of Remote Sensing, 14, 2369–2389.CrossRefGoogle Scholar
  19. de Asis, A. M., and Omasa, K., 2007. Estimation of vegetation parameter for modeling soil erosion using linear spectra mixture analysis of Landsat ETM data. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 309–324.CrossRefGoogle Scholar
  20. Di, L., Runquist, D. C., and Han, L., 1994. Modelling relationships between NDVI and precipitation during vegetation growth cycles. International Journal of Remote Sensing, 15, 2121–2136.CrossRefGoogle Scholar
  21. DiTomaso, J. M., 2000. Invasive weeds in rangelands: species, impacts and management. Weed Science, 48, 255–265.CrossRefGoogle Scholar
  22. Everitt, J. H., Yang, C., Escobar, D. E., and Davis, M. R., 2002. Using remote sensing to detect and map invasive plant species. Annals of the Arid Zone, 41, 32–342.Google Scholar
  23. Friedl, M. A., Sulla-Menashe, D., Tan, B., Schnieder, A., Ramankutty, N., Sibley, A., and Huang, X., 2010. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168–182.CrossRefGoogle Scholar
  24. Groeneveld, D. P., and Watson, R. P., 2008. Near-infrared discrimination of leafless saltcedar in wintertime Landsat TM. International Journal of Remote Sensing, 29, 3577–3588.CrossRefGoogle Scholar
  25. Hardin, P. J., and Jackson, M. W., 2005. An unmanned aerial vehicle for rangeland photography. Rangeland Ecology & Management, 58, 439–442.CrossRefGoogle Scholar
  26. Herrick, J. E., Bestelmeyer, B. T., Archer, S., Tugel, A. J., and Brown, J. R., 2006. An integrated framework for science-based arid land management. Journal of Arid Environments, 65, 319–335.CrossRefGoogle Scholar
  27. Holechek, J. L., Piper, R. D., and Herbel, C. H., 2004. Range Management: Principles and Practices, 5th edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  28. Hunt, E. R., Jr., and Miyake, B. A., 2006. Comparison of stocking rates from remote sensing and geospatial data. Rangeland Ecology & Management, 59, 11–18.CrossRefGoogle Scholar
  29. Hunt, E. R., Jr., Everitt, J. H., Ritchie, J. C., Moran, M. S., Booth, D. T., Anderson, G. L., Clark, P. E., and Seyfried, M. S., 2003. Applications and research using remote sensing for rangeland management. Photogrammetric Engineering & Remote Sensing, 69, 675–693.CrossRefGoogle Scholar
  30. Hunt, E. R., Jr., McMurtrey, J. E., III, Parker Williams, A. E., and Corp, L. A., 2004. Spectral characteristics of leafy spurge (Euphorbia esula) leaves and flower bracts. Weed Science, 52, 492–497.CrossRefGoogle Scholar
  31. Hunt, E. R., Jr., Daughtry, C. S. T., Kim, M. S., and Parker Williams, A. E., 2007. Using canopy reflectance models and spectral angels to assess potential of remote sensing to detect invasive weeds. Journal of Applied Remote Sensing, 1, 013506.CrossRefGoogle Scholar
  32. Hunt, E. R., Jr., Gillham, J. H., and Daughtry, C. S. T., 2010. Improving potential geographic distribution models for invasive plants by remote sensing. Rangeland Ecology & Management, 63, 505–513.CrossRefGoogle Scholar
  33. Jensen, M. E., DiBenedetto, J. P., Barber, J. A., Montagne, C., and Bourgeron, P. S., 2001. Spatial modeling of rangeland potential vegetation environments. Journal of Range Management, 54, 528–536.CrossRefGoogle Scholar
  34. Ji, L., and Peters, A. J., 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87, 85–98.CrossRefGoogle Scholar
  35. Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., and Zhang, X., 2006. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101, 366–378.CrossRefGoogle Scholar
  36. Kuemmerle, T., Röder, A., and Hill, J., 2006. Separating grassland and shrub vegetation by multidate pixel-adaptive spectral mixture analysis. International Journal of Remote Sensing, 27, 3251–3271.CrossRefGoogle Scholar
  37. Laliberte, A. S., Herrick, J. E., and Rango, A., 2010. Acquisition, orthorectification, and classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineering & Remote Sensing, 76, 661–672.CrossRefGoogle Scholar
  38. Lass, L. W., Thill, D. C., Shafii, B., and Prather, T. S., 2002. Detecting spotted knapweed (Centaurea maculosa) with hyperspectral remote sensing technology. Weed Technology, 16, 426–432.CrossRefGoogle Scholar
  39. Lund, H. G., 2007. Accounting for the world’s rangelands. Rangelands, 29(1), 3–10.CrossRefGoogle Scholar
  40. Metternicht, G. I., and Fermont, A., 1998. Estimating erosion surface features by linear mixture modeling. Remote Sensing of Environment, 64, 254–265.CrossRefGoogle Scholar
  41. Montandon, L. M., and Small, E. E., 2008. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, 112, 1835–1845.CrossRefGoogle Scholar
  42. Nagler, P. L., Daughtry, C. S. T., and Goward, S. N., 2000. Plant litter and soil reflectance. Remote Sensing of Environment, 71, 207–215.CrossRefGoogle Scholar
  43. National Research Council (NRC), 1994. Rangeland Health, New Methods to Classify, Inventory, and Monitor Rangelands. Washington, DC: National Academy Press.Google Scholar
  44. Naylor, B. J., Endress, B. A., and Parks, C. G., 2005. Multiscale detection of sulfur cinquefoil using aerial photography. Rangeland Ecology & Management, 58, 447–451.CrossRefGoogle Scholar
  45. Nichols, M. H., Ruyle, G. B., and Nourbakhsh, I. R., 2009. Very-high-resolution panoramic photography to improve conventional rangeland monitoring. Rangeland Ecology & Management, 62, 579–582.CrossRefGoogle Scholar
  46. NRCS, 2003. National Range and Pasture Handbook, Revision 1. USDA National Resource Conservation Service, Grazing Lands Technology Institute. Washington, DC: United States Department of Agriculture.Google Scholar
  47. NRCS, 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. USDA Agriculture Handbook, USDA Natural Resource Conservation Service. Washington, DC: United States Department of Agriculture, Vol. 296.Google Scholar
  48. Numata, I., Roberts, D. A., Chadwick, O. A., Schimel, J., Sampaio, F. R., Leonidas, F. C., and Soares, J., 2007. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. Remote Sensing of Environment, 109, 314–327.CrossRefGoogle Scholar
  49. Palmer, A. R., and Fortesque, A., 2004. Remote sensing and change detection in rangelands. African Journal of Range & Forage Science, 21, 123–128.CrossRefGoogle Scholar
  50. Parker Williams, A., and Hunt, E. R., Jr., 2002. Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sensing of Environment, 82, 446–456.CrossRefGoogle Scholar
  51. Paruelo, J. M., Epstein, H. E., Lauenroth, W. K., and Burke, I. C., 1997. ANPP estimates from NDVI for the central grassland region of the United States. Ecology, 78, 953–958.CrossRefGoogle Scholar
  52. Petersen, S. L., Stringham, T. K., and Laliberte, A. S., 2005. Classification of willow species using large-scale aerial photography. Rangeland Ecology & Management, 58, 582–587.CrossRefGoogle Scholar
  53. Pickup, G., Bastin, G. N., and Chewings, V. H., 1994. Remote-sensing-based condition assessment for nonequilibrium rangelands under large-scale commercial grazing. Ecological Applications, 4, 497–517.CrossRefGoogle Scholar
  54. Pickup, G., Bastin, G. N., and Chewings, V. H., 1998. Identifying trends in land degradation in non-equilibrium rangelands. Journal of Applied Ecology, 35, 365–377.CrossRefGoogle Scholar
  55. Piñeiro, G., Oesterheld, M., and Paruelo, J. M., 2006. Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing. Ecosystems, 9, 357–373.CrossRefGoogle Scholar
  56. Rango, A., Laliberte, A., Steele, C., Herrick, J. E., Bestelmeyer, B., Schmugge, T., Roanhorse, A., and Jenkins, V., 2006. Using unmanned aerial vehicles for rangelands: current applications and future potentials. Environmental Practice, 8, 159–168.CrossRefGoogle Scholar
  57. Reeves, M. C., Winslow, J. C., and Running, S. W., 2001. Mapping weekly rangeland vegetation productivity using MODIS algorithms. Journal of Range Management, 54, A90–A105.Google Scholar
  58. Reeves, M. C., Zhao, M., and Running, S. W., 2006. Applying improved estimates of MODIS productivity to characterize grassland vegetation dynamics. Rangeland Ecology & Management, 59, 1–10.CrossRefGoogle Scholar
  59. RMA, 2010. Vegetation Index Insurance Standards Handbook 2011 and Succeeding Crop Years. Washington, DC: United States Department of Agriculture. FCIC-18140 (06–2010) Federal Crop Insurance Corporation, Risk Management Agency.Google Scholar
  60. Roberts, D. A., Smith, M. O., and Adams, J. B., 1993. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sensing of Environment, 44, 255–269.CrossRefGoogle Scholar
  61. Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H., 2004. A continuous satellite-derived measure of global terrestrial primary productivity. Bioscience, 54, 547–560.CrossRefGoogle Scholar
  62. Sivanpillai, R., and Booth, D. T., 2008. Characterizing rangeland vegetation using Landsat and 1-mm VLSA data in central Wyoming (USA). Agroforestry Systems, 73, 55–64.CrossRefGoogle Scholar
  63. Tieszen, L. L., Reed, B. L., Bliss, N. B., Wylie, B. K., and DeJong, D. D., 1997. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecological Applications, 7, 59–78.Google Scholar
  64. Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., Vermote, E. F., and Saleous, N. E., 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485–4498.CrossRefGoogle Scholar
  65. Underwood, E., Ustin, S., and DiPietro, D., 2003. Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment, 86, 150–161.CrossRefGoogle Scholar
  66. Vrieling, A., Rodrigues, S. C., Bartholomeus, H., and Sterk, G., 2007. Automatic identification of erosion gullies with ASTER imagery in the Brazilian Cerrados. International Journal of Remote Sensing, 28, 2723–2738.CrossRefGoogle Scholar
  67. Wang, J., Rich, P. M., and Price, K. P., 2003. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24, 2345–2364.CrossRefGoogle Scholar
  68. Washington-Allen, R. A., West, N. E., Ramsey, R. D., and Efroymson, R. A., 2006. A protocol for retrospective remote sensing-based ecological monitoring of rangelands. Rangeland Ecology & Management, 59, 19–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.USDA-ARS Hydrology and Remote Sensing LaboratoryBeltsvilleUSA